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ABSTRACT

We describe a new distance-based metric to measure the
strength of collocalization in multi-color microscopy images
for user-selected regions. This metric helps to standardize,
objectify, quantify, and even automate light microscopy ob-
servations. Our new algorithm uses this metric to automati-
cally identify and annotate a donut shaped actomyosin stress
fiber bundle evident in vascular smooth muscle cells on cer-
tain types of surfaces. Both the metric and the algorithm
have been implemented as an open source plugin for the
popular ImageJ toolkit. They are available for download at
http://code.google.com/p/actin-myosin-plugin/. Using
cells stained for the cytoskeletal proteins actin and myosin,
we show how characteristics of the identified stress fiber bun-
dle are indicative of the kind of surface the cell is placed
upon, and prove that weak spots in this structure are corre-
lated with local membrane extensions. Given the relation-
ship between membrane extension, cell migration, vascular
disease, embryonic development, and cancer metastasis we
provide that these tools to enable biological research that
could improve our quality of life.
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1. INTRODUCTION AND RELATED WORK

This study introduces a metric to standardize, quantify,
and objectify light microscopy colocalization observations.
It is important to standardize light microscopy colocaliza-
tion observations observations so biologists can quickly, and
robustly compare cells and subcellular regions. With stan-
dard metrics for colocalization we can define algorithms to
automatically identify structural features in cells. For ex-
ample, in Figure 1 there is an interesting stretched donut
shaped actomyosin stress fiber bundle as annotated in blue
in Figure 2. Algorithms that can identify these structural
sub-cellular features coupled with metrics to determine their
strength provide useful insights into cell migration, which is
central to many vital biological processes, including vascular
disease, embryonic development, and cancer metastasis.

To understand cell migration we examine the correlation
between cytoskeletal organization and cell morphological fea-
tures such as membrane protrusions. Membrane protrusions
are structures that extend from the cell surface and are good
indicators for cell migration. The areas roughly indicated in
blue from Figure 4 are examples of membrane protrusions
in our dataset. The cytoskeleton is a three-dimensional net-
work of structural fibers found within the cytoplasm of a
cell. It is responsible for cell movement and shape stability.
Actin microfilaments (shown in red) are one of the three ma-
jor types of fibers that form the cell cytoskeleton. Through
their association with the motor protein myosin (shown in
green) these microfilaments carry out cellular movements in-
cluding gliding, contraction, and cytokinesis. Cells can sense
and respond to the mechanical stiffness and the chemical
identity of the surfaces that they attach to.



Figure 1: Smooth muscle cell with
a stretched donut shaped acto-
myosin stress fiber bundle. Actin
is stained in red. Myosin is stained

Figure 2: The structure we want to
identify has been labeled and su-
perimposed in blue upon the acto-
myosin stress fiber bundle.

Figure 3: The proposed struc-
ture produced by our algorithm
is annotated in blue. Thicker
and brighter shades of blue repre-

in green. Yellow areas are overlap-
ping actin and myosin.

Figure 4: Membrane protrusions are circled in blue.

Light microscopy is a powerful approach to study cytoskele-
tal responses to the extracellular matrix because the cy-
toskeleton encodes for underlying signals from the extra-
cellular matrix it rests on. Cell microscopy methods often

sent higher metric scores indicat-
ing greater structure strength.

involve the visual inspection of nuclei, organelles, and mor-
phology. Using this approach, observations are made based
on variations in cells from their expected appearance. How-
ever, this approach requires human judgments which are
subjective due to observer variability, a lack of standard-
ization, and a limited feature set.

Consequently, we define a set of quantitative measures
that correlate well with the visual appearance of cells and
that allow for both intracellular and intercellular compar-
isons to address this subjectivity. While there are many
different statistical measures of dependence and correlation,
this is the first measure of correlation or dependence for
items adhering to a geometric structure. This kind of mea-
sure provides a new kind of information that can improve
computational image classification accuracy. Computational
image classification techniques have been successfully ap-
plied to a number of clinical problems [5] [4] [2].

Computational image classification is used to categorize
a raster image into a finite set of classes based on compu-
tationally extracted features. When considering meaning-
ful features for describing an image, the three fundamental
features include spectral, textural, and contextual features.
Spectral features describe the tonal variations that can be
measured as a distribution and represented as a histogram
[9]. Textural features contain information about the spa-
tial distribution of tonal variations. These tonal variations
can be represented as a co-occurrence matrix [8]. The first
two types of features, spectral and textural, are essentially
non-geometric image features based on tonal variations and
tonal distributions. Contextual features are more complex.
They are used to extract structural information from the
image context. This paper defines new structural features
for image retrieval, classification, and other kinds of analysis
building on our previous work in this area [7].
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Figure 5: Visualize Cell Overview

The image processing and feature extraction algorithm
is available for download as an ImageJ plugin at http://
code.google.com/p/actin-myosin-plugin/. This plugin
measures how well dual channel signals, such as actin and
myosin, colocate with distance from a region of interest.
This plugin uses a new metric we developed to measure the
correlation between two channels in 2-D space as the dis-
tance from a specified region grows. This metric will help
biologists quantify visual judgments about structural fea-
tures both within a cell and between other cells.

Our experiments are on the A10 cell line, rat aortic vas-
cular smooth muscle cells. The polarity of a cell, as de-
fined by its functional and morphological asymmetry, is an
important function in cell growth and differentiation [11].
This polarity reflects in part cell interactions with the ex-
tracellular matrix. These interactions are accomplished by
both receptor-dependent interactions and also by the me-
chanical stiffness of the extracellular matrix. Our specific
interest is on the regulation of vascular smooth muscle cells
by the mechanical stiffness of arteries [6] [10] . To examine
this phenomenon, we experimentally manipulated the un-
derlying matrix stiffness in order to gain insights into the
resulting cell morphogenesis. We placed cells onto the fol-
lowing four different surfaces: mechanically stiff collagen,
mechanically flexible collagen, monolayer collagen, and fi-
bronectin. After 24 hours the cells were fixed and stained
with reagents for actin and myosin proteins, and acquired
using light microscopy. The procedure for fixing the cells is
the same procedure we used in our prior work on automated
fluorescence microscopy [1]. The collagen thin films were
made using the same methods described in our prior work
on collagen fibrils [6] [10].

2. TOOLS

We provide two main tools as part of the plugin. The
first tool processes dual channel two dimensional images to
produce a visualization that allows biologists to see a spatial
relationship and determine where the channels are strongest
together. Figure 5 shows a flow chart detailing the process
we use to create this visualization. Our second tool works on
these processed images. It scores regions of interest based
upon how far away the most intense overlapping signals are
from the region. Regions of interest can be quickly specified
using ImageJ’s region of interest polygon tool. That tool
allows users to place vertices with a point and click interface.
Vertices can be moved by dragging them into place. Users
can then run the “Band Score” tool. This allows users to
painlessly make minor changes to their regions of interest
if they so desire. Used in combination, these two plugins
follow this general procedure:

1. Remove background from the raw images.

2. Normalize each color channel image independently.
3. Combine the two color channels.

4. Define the region of interest by placing vertices.

5. Score the region of interest.



Figure 6: Actin channel grayscale image before and after normalization and color transformation

2.1 Remove Background

Before normalization it is important to remove pixels that
are not part of the cell, because our normalization technique
uses distributional knowledge about pixel values. By remov-
ing background pixels and pixels from nearby cells we can
better measure the distribution of intensity values for the
cell in question.

ImageJ already provides tools to do this. Our technique
uses the make binary, convert to mask, and then fill holes
plugins to create a mask. First we convert a copy of the
image into a binary format. Using a morphological filtering
process, we dilate the binary image using a quasi-circular
structuring element. Dilation with a circular element of ra-
dius R increases the width of the foreground cell structure
by R. Then we use ImageJ’s Binary class to fill holes in 8-
connected particles of the cell mask. Using Imagel’s Anal-
ysis class we find the largest particle in the image. This
particle is retained as a cell mask and other smaller arti-
facts are merged with the background.

We create these masks for both the red channel image and
the green channel image. We produce a final mask using an
“or” function. If either mask says the pixel is in the cell
then the pixel is in the cell. Pixels that are outside of this
mask are displayed in black. Every successive step checks
this mask and does not operate on any pixels determined to
be outside the cell.

2.2 Channel Normalization

In order to visualize the relative intensity of actin to myosin,
biologists normally apply contrast enhancement algorithms,
and manually tune pixel thresholds and other settings. This
process is manuel, highly subjective, and prone to errors
and differences of opinion. A consistent automated normal-
ization algorithm would alleviate these problems.

Instead of providing normalization algorithms ImageJ only
provides “false color-scale transformations”. These transfor-

mations map one set of pixel intensities to another using
predefined “Black-Box” lookup tables that are completely
independent of the data being used. Many of these transfor-
mations are hand-tuned and include optimizations for spe-
cific tasks.

Instead of using a fixed lookup table that is independent of
our data points, we use V(p) in Equation 1. V(p) accounts
for different distribution of colors within different images. It
is possible for this normalization technique to transform the
same raw intensity value from two different images into two
different output colors based upon the distribution of colors
in each of those images.

Given that:
N— Number of bins
R— Fraction of a standard deviation covered by a bin
p— Raw pixel value
X— Mean pixel value
S— Size of 1 standard deviation
O(p)— Offset in standard deviations from mean
_ p=X
]
M— Max pixel value
0 it O(p) <~

Vip)=¢ M ¥ +22)41)  if - NE <=0(p) < N

M if O(p) >= ¢ (1)
V(p) in Equation 1 converts raw pixel values to normalized

intensity values for a given channel. We normalize the actin
channel separately from the myosin channel. Once the actin



and myosin color channels are normalized independently but
to the same color scale, they are comparable and can be
visualized without further hand tuning. To apply V(p) first,
create a bin for each fraction “R” of a standard deviation
from the mean “X” of the raw pixel values in the channel.
Then determine which bin pixel “p” belongs to by calculating
the offset “O(p)” of the pixel from the mean in standard
deviations. The pixels in each bin all receive the same value
for V(p). The range of output values for V(p) are linearly
distributed per bin starting from the minimum pixel value
0 and ending at the maximum pixel value “M”.

We normalize each channel by V(p) and plot the pixel
intensities to a specified RGB color component. Figure 6
shows how the actin channel is normalized by V(p) and plot-
ted as the Red color component. Figure 7 shows how the
myosin channel is normalized by V(p) and plotted as the
Green color component.

2.3 Merge Channels

ImageJ has standard tools to combine and overlay multi-
ple images. After running our normalization algorithm we
assign each grayscale image a color. In the experiments
shown we used the red channel for the actin stain and the
green channel for the myosin stain. We overlay these chan-
nels on top of each other and present them to the user as a
single full color image. As shown in Figure 8 this results in
yellow areas that reveal actin/myosin colocalization.

Brighter green colors indicate that myosin in that area
has a stronger intensity than elsewhere in the cell. Likewise,
brighter red colors indicate that actin in that area has a
stronger intensity than elsewhere in the cell. Brighter yellow
colors indicate stronger colocalization of actin and myosin.
Black color indicates that neither actin or myosin is present,
or that these signals are present at such low intensity values
that they are placed in the bin representing the standard
deviation farthest below the mean.

Figure 8: Cell after merging red and green.

Selecting the “Visualize Cell” function from the plugins
menu will produce merged images, like that shown in Figure
8, using the two channels and the normalization parameters
you specify.

2.4 Band Structure

Myosin is known to travel along Actin fibers during muscle
movement. The overlap of actin and myosin forms meaning-
ful shapes that define the cytoskeleton. Breaks in this struc-
ture are also significant and tend to indicate membrane pro-
trusions. The relationship between membrane protrusions
and cell motion is an interesting research question.



These actin/myosin colocations commonly form a band-
like structure inside the cell roughly following the perime-
ter of the cell. A polygon can be defined to represent this
structure. The polygon, it’s geometric properties, and the
distribution of actin and myosin along this polygon are mea-
surable features that can be used to analyze and compare
cells quantitatively.

2.5 Distance Based Collocation Metric

Users can annotate polygonal structures using our ImageJ
plugin with the “Region of Interest” tool. The “Region of
Interest” tool allows users to annotate a polygon by plac-
ing vertices in order around the cell. The “Score” plugin
reports the strength of the actin/myosin colocation around
the defined polygon, and annotates the edges by their rela-
tive strength. Later in the paper we introduce an algorithm
to automatically define the polygon by optimizing the score
metric.

The scoring function is a linear combination of all the pix-
els. Pixels have both a weight and a collocation value. Each
pixel’s weight is determined by how close it is to the band.
The collocation value is set when the normalized intensity
values of both the actin and myosin channels are at the max-
imum value “M” from function V(p). These pixels appear as
completely bright yellow in our merged color representation,
therefore we refer to them as “yellow” pixels. Pixel weight is
proportional to the inverse of the distance of the pixel from
the band raised to a power. This power can be set using
the falloff constant. By default it is set to 2 resulting in the
popular inverse square law.

The collocation value of each pixel is determined by the
collocation of actin and myosin. If the pixel is “yellow”, as
defined above, then it has value 1 divided by the number
of “yellow” pixels, otherwise it has value -1 divided by the
number of other pixels. Thus pixels with high values of
actin and myosin, relative to the rest of the cell, improve the
band score while all other pixels degrade it. Normalizing the
weight of a “yellow” pixel to the number of “yellow” pixels
and the weight of non-yellow pixels to the number of non-
yellow pixels places an equal value upon bands that can
get the closest to all the yellow pixels and bands that avoid
non-yellow areas. It is possible to multiply non-yellow pixels
by an additional weight parameter to prefer or discourage
matching yellow pixels over avoiding non-yellow pixels.

D(z,y)— Minimum distance of pixel (x,y) to an edge

F— Falloff constant
Y- Number of yellow pixels
N— Number of non-yellow pixels
0 if pixel (x,y) is not yellow
Clz,y) =
1 if pixel (x,y) is yellow
1 if pixel (x,y) is not yellow
C, (1‘7 y) -
0 if pixel (x,y) is yellow
Cle.y)  C'(x.y)
P(a,y) = Y N (2)

(D(z,y) + 1)

We create band scores by summing the weighted pixel
values produced using Equation 2. For every pixel in the cell
we determine the nearest band edge. This determines which
edge that pixel will add its weight to. We then sum the pixel
weights to determine the edge weights. The total band score
is the sum of all the edge scores. This band is displayed on
top of the cell using a blue line of variable width to indicate
the relative strength of each segment of the band. Edges
that are abnormally below average are considered breaks in
the band and are not displayed. Edges that are no more
than 1 standard deviations below the average edge score are
displayed with increasing thickness starting with a 1 pixel
width blue line. Each additional standard deviation above
that increases the width of the line by 1 pixel.

2.6 Automatic Band Detection Algorithm

Polygons representing collocated actin/myosin stress fibre
bands can be automatically defined. We provide an auto-
matic band detection algorithm that identifies a band (donut
shaped region) of actin collocated with myosin which com-
monly appears near the perimeter of vascular smooth muscle
cells in our dataset. Our algorithm defines this band by in-
telligently placing vertices around the cell on the stress fibre
band to be detected.

Figure 9: Hand made illustration of automatic ver-
tex placement. White lines indicate radial segments
or pie slices. Blue dots, representing vertices, are
automatically placed at the center of mass of yel-
low pixels in the slice. Yellow pixels within the gray
polygon are ignored.

The algorithm uses a radial coordinate system around the
center of mass or “centroid” of the non-zero pixels in the
normalized cell as shown in Figure 9. The cell is segmented
into a tunable number of radially even bins or “pie slices”.
In each slice the algorithm attempts to place a vertex in
the center of mass for “yellow” pixels within that slice with
certain constraints. Firstly “yellow” pixels too near the cen-
troid are discarded to discount interior actin/myosin struc-
tures (e.g. nucleus) unrelated to the stress fibre band. This
threshold distance is a percentage (default 1/3) of the radius



of the current slice. Secondly, the vertex must be placed on
a yellow pixel and near other yellow pixels, otherwise the
detected actin/myosin fibre structure is too spurious to be
considered part of the band. Should the vertex fail the sec-
ond constraint, then a new vertex position is calculated by
ignoring all “yellow” pixels that are closer to the centroid
than the old vertex position. This last heuristic once again
discounts the effects of non-band internal fibre structures.

3. EVALUATION

We used manual annotations by a biologist on normalized
cells as our ground truth. The biologist used ImageJ to circle
membrane projections. He also placed an “X” mark over lo-
cations were the band was noticeably discontinuous and/or
where actin fibers appeared to splay off into the membrane
projection. Large areas with a continuum of small breaks
and extensions were considered as a single break and ex-
tension from the cytoskeletal band structure. Where there
were multiple bands of cytoskeletal fibers running parallel to
each other, only the one closest to the edge was considered
in examining for breaks. The ends of the cell, of which there
are typically two, were not marked for extensions or breaks.
Geometrically, a cell end point is a region where stress fibers
converge or nearly converge. To ensure high quality ground
truth data, the cells were annotated a second time by the
annotator a week later and conflicting annotations were re-
moved. Using both sets of annotations we determined that
the ground truth annotations for cells on monolayer and
mechanically stiff collagen surfaces were stable enough to be
used for further analysis.

Figure 10: Automatic Band for a cell on mechani-
cally stiff collagen after 24 hours.

Weak spots in the band tend to indicate membrane pro-
jections. To prove this statement we converted the ground
truth into labels marking whether edges had a membrane
extension on their exterior. Edges were judged as having
an extension on their exterior if a line could be drawn from
the membrane projection through the edge to the center of
mass of the cell. Additionally, cell end points were counted

Figure 11: Automatic Band for a cell on mechani-
cally flexible collagen after 24 hours.

as membrane extensions. We assigned a 1 to an edge if it
had an extension on the outside and a 0 otherwise. We
calculated the Pearson’s Correlation Coefficient of these la-
bels to our metric’s score for those edges. Keep in mind
that our metric can produce a negative score when non-
yellow points outweigh nearby yellow points, indicating an
abnormally weak edge. Using all our ground truth data we
found a Pearson’s Correlation of -0.4458 between edges with
a strong band and edges that have a membrane extension.
This proves our hypothesis that low metric scores correlate
to nearby membrane extensions.

Visual inspection of cells fixed on mechanically stiff colla-
gen, mechanically flexible collagen, fibronectin, and mono-
layer collagen reveals that after 24 hours, cells on these dif-
ferent surfaces have very different shapes and structures.
Cells on mechanically stiff collagen, like Figure 10, tend to
be elliptical (or at least convex) exhibiting a reasonably well
connected yellow band with a similar shape. This yellow
band tends to be near the exterior of the cell.

Cells on flexible surfaces, such as the cell in Figure 11
placed on mechanically flexible collagen, do not have this
kind of shape. Instead they tend to be concave with bright
yellow regions inside the areas jutting out. These bright
yellow regions are frequently not connected to each other by
other yellow fibers. In about half of these cells yellow fibers
project out from these yellow points in various directions.

Fibronectin is a much stiffer surface than mechanically
stiff collagen [3]. Cells on fibronectin, such as the cell in
Figure 12, tend to be more spread out. Within a cell, fibers
tend to all be oriented in the same direction. It is similar
to the way a board of lumber has a grain. There appears
to be a band that travels along these fibers when they run
parallel to the edge of the cell, but the band will run against
the grain of these stress fibers if the cell exterior does. In
the latter case, it looks like a fat yellow paintbrush was run
lightly over a piece of wood going against the grain.

Cells on monolayer collagen, like Figure 13 tend to exhibit
a c-shaped band.



Figure 12: Automatic Band for a cell on Fibronectin
after 24 hours.

It is possible to predict what type of surface a cell is lo-
cated on using a simplified geometric representation for the
network of structural fibers in the cell. We speculate that
surface stiffness is a factor affecting the overall shape of
structural fibers in a cell. To test this theory we built a
classifier, using structural features, to distinguish between
cells on each surface. Our structural features include the
band score, the number of vertices successfully placed, the
total number of continuous band breaks, the percentage of
“yellow” pixels, what percentage of the cell the band covers,
the strength of each edge in the band, and the length of the
five largest breaks.

To improve classification accuracy we combined these struc-
tural features with the spectral and textural features used in
prior image classification approaches [7]. We also included
the mean and the size of a standard deviation for both the
actin and myosin channels in our feature set. We trained a
LogitBoost meta classifier in Weka using this feature set with
a resulting classification accuracy of 92.8%. Without struc-
tural features accuracy drops to 85%. Clearly, structural
features exhibited by a cell are an important component to
consider when examining the interaction between a cell and
the surface it is on.

4. FUTURE WORK

There are many possible directions to pursue from both
the computer science and biological perspectives. Building a
better algorithm to determine the band shape is an obvious
extension. Using machine learning and artificial intelligence
algorithms to improve membrane extension detection given
the band and local features outside of the band is another
promising research avenue. With time series data we could
investigate the theory that weak areas in the band without
membrane extensions at the current time are more likely to
develop them in the future. Furthermore, time series data
could help determine what direction cells are moving in and
how the identified cytoskeletal features affect this movement.

Figure 13: Automatic Band for a cell on monolayer
collagen after 24 hours.

Our automatic structural identification algorithm could
be used to facilitate structural image search. Designing a
structural similarity metric for bands in conjunction with
textual and spectral similarity metrics would make it possi-
ble to search for cells that are like a given cell. This kind
of search could be very valuable for doctors treating infec-
tions, and for researchers looking for relevant publications
on similar cells.

5. CONCLUSION

In this work we identified a cytoskeletal structure that
commonly occurs in the A10 cell line on mechanically stiff
collage, mechanically flexible collage, monolayer collage, and
fibronectin. We designed a new metric and integrated it into
a new algorithm to automatically identify and measure the
strength of this structure. We implemented this measure in
the popular ImageJ toolkit and made it available for down-
load. Using these tools we determined that weak areas in
this structure are correlated to membrane extensions. Fur-
thermore, we showed that cells placed on different surfaces
tend to exhibit a different general shape in the identified
structure. These findings provide new insights and raise new
question about membrane protrusion formation and cell mi-
gration.
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