
Adding Forward Chaining
and Truth Maintenance

to Prolog

Tim Finin
Rich Fritzson

Dave Matuszek

Paoli Research Center
Unisys Corporation
Paoli, Pennsylvania

Contact: Paoli Research Center, Unisys, PO Box 517, Paoli, PA 19301.
fininQprc.unisys.com (215-648-7446); fritzsonQprc.unisys.com (215-648-7606);
daveQprc.unisys.com (2 15-648- 7489).

Topic: Principles, knowledge representation and reasoning tools.

Abstract: This paper describes Pjc , a simple package which supplies a for-
ward chaining facility in Prolog. Pfc is intended to be used in conjunction
with ordinary Prolog programs, allowing the programmer to decide whether
t o encode a rule as a forward-chaining Pjc rule or a backward chaining
Prolog one. Like other logic programming languages, Pfc programs have a
declarative interpretation as well as clear and predictable procedural one. A
truth maintenance system is built into Pfc system which maintains consis-
tency as well as makes derivations available for applications. Finally, Pfc is
designed to be practical, being relatively efficient and fairly unobtrusive.

Status: Research tool.

Domain: This paper describes a domain-independant tool.

Language: Prolog.

Effort: approximately 1/2 person year.

I23
CH2712-8/89/0000/0123$01.00 0 1989 IEEE

http://fininQprc.unisys.com
http://fritzsonQprc.unisys.com
http://daveQprc.unisys.com

1 Introduction

Prolog, like most logic programming languages, offers backward
chaining as the only reasoning scheme. It is well known that
sound and complete reasoning systems can be built using either
exclusive backward chaining or exclusive forward chaining [19].
Thus, this is not a theoretical problem. It is also well understood
how to “implement” forward reasoning using a backward chain-
ing system and vice versa. Thus, this need not be a practical
problem. In fact, many of the logic-based languages developed
for AI applications [14,7,20,11] allow one to build systems with
both forward and backward chaining rules.

There are, however, some interesting and important issues
which need to be addresses in order to provide the Prolog pro-
grammer with a practical, efficient, and well integrated facility
for forward chaining. This paper describes such a facility, Pjc ,
which we have implemented in standard Prolog.

The Pfc system is a package that provides a forward rea-
soning capability to be used together with conventional Prolog
programs. The Pjc inference rules are Prolog terms which are
asserted as facts into the regular Prolog database. For example,
Figure 1 shows a file of Pic rules and facts which are appropriate
for the ubiquitous kinship domain.

In the next section of this paper we will review the nature of
forward chaining, motivations for using it and some of the issues
one must address in a forward chaining system. We will then give
an informal, example-based presentation of the Pjc language in
the third section. The fourth section will give some more detailed
examples of the use of Pfc . Some of the implementation details
are described in the fifth section. This paper concludes with a
final section which summarizes our experiences and plans for the
future.

2 Forward Chaining
I t is well known that one can define sound and complete infer-
encing systems which rely solely on either forward or backward
reasoning. This is discussed in introductory AI texts [19]. It
is equally well understood that there are good reasons why one
might wish to rely on one or the other or a mixed strategy in prac-

spouse(X,Y) <=> spouse(Y,X).
spouse(X ,Y) ,gender(X ,G> ,IotherGender (G. GZ))=>gender(Y, GZ) .
gender(P,male) <=> male(P).
gender(P,female) <=> female(P).
parent(X,Y),female(X) <=> mother(X,Y).
parent(X.Y) ,parent(Y,Z) => grandparent(X,Z).
grandparent(X,Y),male(X) <=> grandfather(X,Y).
grandparent(X,Y),female(X) <=> grandmtherO(,Y).
mother(Ma,Kid),parent(Kid,GKid) => grandmother(Ma,GKid).
grandparent(X,Y),female(X) <=> grandmother(X,Y).
parent(X,Y) .male(X) <=> father(X,Y).
mother(Ha,X) ,mother(Ma,Y) ,{X\==Y) => sibling(X,Y).

Figure 1: Examples of Pj. Rules which represent common
kinship relations

tice [15, 231. This section reviews some of the reasons why one
might want to apply certain knowledge in the form of forward-
chaining rules and looks at some of the issues surrounding the
design of a forward chaining facility. In particular, we will dis-
cuss the importance of a truth maintenance system in a forward
chaining system.

2.1 Characterization of Forward Chaining

The terms forwanl and backwad chaining are used somewhat
loosely within the AI community, covering such disparate things
as OPS5-like production systems to resolution-based theorem
provers. In general, when one speaks of a forward chaining rule,
one has in mind a rule of the form:

P I P ~ * . . P ~ + Q I Q ~ . . * Q ~

Informally, the Pj on the left hand side (lhs) of the rule form
a set of conditions which, if satisfied, enable the rule for firing.
When fired, the Q; on the rule’s right hand side (rhs) specify a
set of actions which are to be carried out. Typically, the condi-
tions correspond to the presence of assertions in a database of
facts. A condition is satisfied if it matches some particular fact
in this database. There is more variability on the meaning and
character of an action in the rhs of a rule. In some systems, such
as OPS5 [lo, 171, these can be arbitrary evaluable expressions.
In others, such as MRS [7], the Q; are propositions which are
t o be added to the fact database. Even in this latter case, sys-
tems differ as to whether the newly derived facts are persistent
and are recorded into the global database [7, 141 or are held in
a temporary extension to the permanent database (as in a list)

Some of the ways in which the meaning of a forward chaining
[181.

rule can vary are:

Are the constituents of the rule’s rhs actions t o be per-
formed or propositions to be added to the database?
When the addition of a new fact to the database triggers
some rules, should all of the rules be run or just one? If
more than one is run, should the order be important?
Should retracting database assertions be allowed?
If retractions are allowed, how should they effect partially

If retractions are allowed, should we perform “truth main-
triggered rules?

tenance”?

Given that we are trying to provide a forward chaining facility for
Prolog, some of these choices are fairly clear cut. The particulars
of the package that we have designed are described in the sections
to follow.

2.2 Motivations for Forward Chaining

There are a number of situations in which a forward chaining
control strategy is preferred over a backward chaining one. We
will briefly mention the major ones. We will assume that we
are discussing a forward chaining system in which the rhs’s of
rules specify necessarily true facts which are to be asserted into
the global database and remain there until explicitly retracted.

1 24

The usual reasons for choosing a forward reasoning strategy stem
from the particular nature of the problem being solved. These
include:

space/time tmdeofls. If a problem involves solving the same
goal frequently, it may be more efficient to express the rules
for deducing that goal as forward chaining rules. This re-
duces the computation while increasing the need for static
memory.
the shape of the inferential space. Forward chaining tends
to involve less search than backward chaining when the
ratio of premises to conclusions is high.
avoiding long deductive chains. Forward chaining is useful
for avoiding long (or even infinite) deductive chains.
dmwing all possible inferences. Many problems require one
to draw all possible inferences from a set of axioms. For-
ward chaining is an efficient way to do this.
alerting. A related situation is one in which we want to
ensure that certain deductions are made as soon as possible,
e.g. for purposes of alerting or monitoring.

There are other reasons to consider using a forward chain-
ing control structure, one of which we will briefly mention. It is
sometimes very convenient to construct a logic program in which
a subset of the database acts as the interface between two inde-
pendent and “concurrent” subsystems. As an example, consider
designing a system in which one subsystem maintains a model
of a set of objects and their locations on a plane and another is
responsible for maintaining a graphical display of these objects.
One way to (loosely) couple these two subsystems is to have the
first make database assertions which represent the properties of
the objects and their locations. The second subsystem has a set
of forward chaining rules which are triggered by the first subsys-
tem’s assertions and cause the display to be updated. This is
similar to the notion of an actiue value found in many Lisp-based
systems (e.g. Loops [2], KEE [l]). This was one of the chief
ways in which the forward chaining (thante) rules of MICRO-
PLANNER [22] were used.

2.3 Truth Maintenance

A forward chaining facility in a logic-oriented, rule-based system
(as opposed to a production-rule oriented system like OPS5) has
a special need for a truth maintenance system (TMS). Although
a TMS can be used with a deductive language using any sort of
reasoning strategy, most of the work in TMS systems is associated
with forward reasoning [6, 5, 3, 16, 131.

There are really two closely related reasons for this need: one
“ezternal” and the other “internal”. The first (the “external”) is
that we want, in general, to keep the database consistent. Con-
sider a situation in which a forward chaining rule has made an
inference based on the state of the database at some time and
thereby adds a new fact to the database. If the database changes
at some later time such that the earlier inference is no longer
valid, then the conclusion may have to be withdrawn and the
assertion removed from the database. This is not a problem in
a pure backward-chaining system since conclusions are always

drawn (and re-drawn, if necessary) with respect to the current
state of the database.

The second (“internal”) need for a TMS has to do with the
particular implementational strategy we have employed. A rule
with a conjunction on its lhs (i) can be rewritten as shown below
(ii):

(i) P, Q, R => S
(ii) F => (9 => (R => SI)

That is, as a rule with a atomic lhs (P) which, when triggered,
adds a new rule which monitors for the remaining conjuncts from
the original rule. In such a scheme, it is important to keep track
of these derived rules which represent partially instantiated or
triggered rules. If a database assertion supporting a partially
triggered rule is erased, then the rule need to be killed. This
ensures that a rule will fire only if all of its required conditions
are simultaneously true.

A truth maintenance system is useful for reasons besides keep-
ing the knowledge base consistent. A TMS typically records the
proof derivations of all of the facts in the database. This is useful
in a variety of ways, such as generating explanations, abductive
reasoning and debugging.

3 The Pfc language

This section describes Pjc . We will start by introducing the
language informally through a series of examples drawn from
the domain of kinship relations. This will be followed by an
example and a description of some of the details of its current
implement at ion.

Overview

The Pfc package allows one to define forward chaining rules and
to add ordinary Prolog assertions into the database in such a way
as to trigger any of the Pfc rules that are satisfied. An example
of a simple Pfc rule is:

gender(P,male) => male(P)

This rule states that when a fact unifying with gender(P, male)
is added to the database, then the fact male(P) is true. If this
fact is not already in the database, it will be added. In any
case, a record will be made that the validity of the fact male(P)
depends, in part, on the validity of this forward chaining rule and
the fact which triggered it. To make the example concrete, if we
add gender(john,male), then the fact male(john) will be added
to the database unless it was already there.

In order to make this work. it is necessary to use the predicate
add/f rather than assert/l in order to assert Pfc rules and any
facts which might unify with a goal in the lhs of a P f c rule.

Compound Rules. A slightly more complex rule is one in
which the rule’s left hand side is a conjunction or disjunction of
conditions:

parent(X,Y). female(X) => mother(X,Y)
mother(X,Y); father(X.Y) => parent(X,Y)

I25

The first rule has the effect of adding the assertion mother(X,Y)
to the database whenever parent(X,Y) and femak(X) are si-
multaneously true for some X and Y. Again, a record will be
kept that indicates that any fact mother(X,Y) added by the
application of this rule is justified by the rule and the two trig-
gering facts. If any one of these three clauses is removed from
the database, then all facts solely dependent on them will also
be removed. Similarly, the second example rule derives the par-
ent relationship whenever either the mother relationship or the
father relationship is known.

In fact, the lhs of a P f c rule can be an arbitrary conjunction
or disjunction of facts. P f . handles a rule like (i) by putting it
into conjunctive normal form, resulting in the two rules given in
(ii) below:

(i) P, (Q;R), S => T
(ii) P,Q,S => T

P,R,S => T

Bi-conditionals.
tional rules, such as:

Pfc has a limited ability to express bi-condi-

mother(P1,PZ) <=> parent(P1,PZ). female(P1).

In particular, adding a rule of the form P<=>q is the equivalent
to adding the two rules P=>q and q=>P. The limitations on the
use of bi-conditional rules stem from the restrictions that the two
derived rules be valid horn clauses. This is discussed in a later
section.

Condi t ioned Rules. It is sometimes necessary to add some
further condition on a rule. Consider the following definition of
sibling: “TWO people are siblings if they have the same mother
and the same father. No one can be his own sibling.” This
definition could be realized by the following Pje rule

mother(Ma.Pl), mother(Ma,P2), CPl\==P2),
father(Pa,Pl), father(Pa,P2)

=> sibling(P1 ,P2).

Here we must add a condition to the Ihs of the rule which states
the the variables PI and P2 must not unify. This is effected by
enclosing an arbitrary Prolog goal in braces. When the goals to
the left of such a bracketed condition have been fulfilled, then it
will be executed. If it can be satisfied, then the rule will remain
active, otherwise it will be terminated.

Negation. We sometimes want to draw an inference from the
absence of some knowledge. For example, we might wish to en-
code the default rule that a person is assumed to be male unless
we have evidence to the contrary:

person(P), -female(P) => male(P).

A lhs term preceded by a N is satisfied only if no fact in the
database unifies with it. Again, the Pfc system records a jus-
tification for the conclusion which, in this case, states that it
depends on the absence of the contradictory evidence.

As a slightly more complicated example, consider a rule which
states that we should assume that the parents of a person are

married unless we know otherwise. Knowing otherwise might
consist of either knowing that one of them is married to a yet
another person or knowing that they are divorced. We might try
to encode this as follows:

parent (PI ,X) , parent (P2, X) , CPI\==P2),
-divorced(Pl,P2),
-spouse(Pl.PJ), CP3\==P2),
-spuse(P2.P4), CP4\==PI)

spouse(Pi,P2).
=>

Unfortunately, this won’t work. The problem is that the con-
joined condition -spouse(Pl.P3), CP3\==P2) does not mean
what we indended it to - that there is no P3 distinct from P2
that is the spouse of P1. Instead, it means that P1 is not mar-
ried to any P3. We need a way to move the qualification P3\==P2
inside the scope of the negation. To achieve this, we introduce
the notion of a qualified goal. A lhs term P I C , where P is a
positive atomic condition, is true only if there is a database fact
unifying with P and condition C is satisfiable. Similarly, a lhs
term N P / C , where P is a positive atomic condition, is true only
if there is no database fact unifying with P for which condition
C is satisfiable. Our rule can now be expressed as follows:

parent(PI,X), parent(P2,X)/(Pi\==P2),
‘divorced(Pl.P2),
-spouse(Pi .P3)/(P3\==P2),
-spouse(P2.P4)/(P4\==Pi)

spous.(P1,P2).
=>

Procedura l Interpretat ion. Note that the procedural inter-
pretation of a Pfc rule is that the conditions in the lhs are checked
from left to right. One advantage to this is that the programmer
can chose an order to the conditions in a rule to minimize the
number of partial instantiations. Another advantage is that it
allows us to write rules like the following:

at(Obj,Locl),at(Obj,Loc2)/CLocl\==Loc2)
=> Cremove(at(Obj.Loc1))).

Although the declarative reading of this rule can be questioned,
its procedural interpretation is clear and useful - “If an object
is known to be at location Locl and an assertion is added that it
is a t some location Loc2, distinct from Locl, then the assertion
that it is at Locl should be removed.”

T h e Right H a n d Side of a Rule. The examples seen so far
have shown a rules rhs as a single proposition to be “added”
to the database. The rhs of a Pfc rule has some richness as
well. The rhs of a rule is a conjunction of facts to be “added”
to the database and terms enclosed in brackets which represent
conditions/actions which are executed. As a simple example,
consider the conclusions we might draw upon learning that one
person is the mother of another:

mother(X.Y) => female(X), parent(X.Y), adult(X1.

As another example, consider a rule which detects bigamists
and sends an appropriate warning to the proper authorities:

I26

spouse(X.Y), spouse(X.Z), CY\==Z> =>
bigamist (X) ,
Cfonnat(”-N-w is a bigamist, married

to both - w and -v-n“,[X,Y,Zl)>.

Each element in the rhs of a rule is processed from left to right
- assertions being added to the database with appropriate jus-
tification and actions being executed. If an action can not be
satisfied, the rest of the rhs is not processed.

We would like to allow rules to be expressed as bi-conditional
in so far a possible. Thus, an element in the lhs of a rule should
have an appropriate meaning on the rhs as well. What mean-
ing should be assigned to the conditional fact construction (e.g.
P / Q) which can occur in a rule’s lhs? Such a term in the rhs of a
rule is interpreted as a conditioned assertion. Thus the assertion
P / & will match a condition PI in the lhs of a rule only if P and
PI unify and the condition Q is satisfiable. For example, consider
the rules that says that an object being located at one place is
reason to believe that it is not at any other place:

at (X, Li) => not (at (X , L2))/LZ\==LI

Note that a conditioned assertion is essentially a Horn clause.
We would express this fact in Prolog as the backward chaining
rule:

not(at (X,LZ)) :- at (X,L1) .LI\==LZ.

The difference is, of course, that the addition of such a condi-
tioned assertion will trigger forward chaining whereas the asser-
tion of a new backward chaining rule will not.

The Truth Maintenance System

As discussed in the previous section, a forward reasoning system
has special needs for some kind of truth maintenance system.
The Pfc system has a rather straightforward TMS system which
records justifications for each fact deduced by a P f c rule. When-
ever a fact is removed from the database, any justifications in
which it plays a part are also removed. The facts that were jus-
tified by a removed justification are checked to see if they are
still supported by some other justifications. If they are not, then
those facts are also removed.

Such a TMS system can be relatively expensive to use and
is not needed for many applications. Consequently, its use and
nature are optional in Pfc and are controlled by the predicate
pfcTmsMode/l. There are three possible cases:

0 pfcTmsMode(full) - The fact is removed unless it has well
founded support (WFS). A fact has WFS if it is a given or
is supported by the user or by a justification all of whose
justificees have WFS. This is the most expensive mode,
since determining if a. fact has WFS requires detecting local
cycles (see [15] for an introduction).

0 pfcTmsMode(local) - The fact is removed only if it has no
supporting justifications.

0 p f cTmsMode(none) - The fact is never removed.

A fact is considered to be a giwen if it is found in the database
with no visible means of support. That is, if P f c discovers an as-
sertion in the database that can take paft in a forward reasoning

step, and that assertion is not supported by either the user or
a forward deduction, then a note is added that the assertion is
assumed to be a given. This adds additional flexibility in inter-
facing systems employing P f c to other Prolog applications. A
fact is supported by the user if it was directly asserted into the
database via an explicit call to the add/ l predicate.

For some applications, it is useful to be able to justify actions
performed in the rhs of a rule. To allow this, Pfc supports the
idea of declaring certain actions to be undoable and provides the
user with a way of specifying methods to undo those actions.
Whenever an action is executed in the rhs of a rule and that
action is undoable, then a record is made of the justification for
that action. If that justification is later invalidated (e.g. through
the retraction of one of its justificees) then the support is checked
for the action in the same way as it would be for an assertion.
If the action does not have independent support, then P f c tries
each of the methods it knows to undo the action until one of
them succeeds.

In fact, in Pfc , one declares an action as undoable just by
defining a method to accomplish the undoing. This is done via
the predicate pfcUndo/2. The predicate pfcUndo(A1, A2) is
true if executing A2 is a possible way to undo the execution
of Al. For example, we might want to couple an assertional
representation of a set of graph nodes with a display of them
through the use of P f c rules:

at (N ,XU) => IdisplayNode(N, XY)).
arc(Nl,N2) => ~displayArc(N1,AZ~.

pfcUndo(displayNode(N,XY).eraseNode(N,XY)).
pfcUndo(displayArc(N1 ,NZ), eraseArc(N1,NZ) 1.

Limitations

The PfC system has several limitations, most of which it inher-
its from its Prolog roots. One of the more obvious of these is
that Pfc rules must be expressible as a set of horn clauses. The
practical effect is that the rhs of a rule must be a conjunction of
terms which are either assertions to be added to the database or
actions to be executed. Negated assertions and disjunctions are
not permitted, making the following rules ill-formed:

parent (X ,Y) <=> mother(]: ,Y) ;father (X ,Y)
male(X) <=> -female(X)

Another restrictions is that all variables in a Pfc rule have
implicit universal quantification. As a result, any variables in
the rhs of a rule which remain uninstantiated when the 111s has
been fully satisfied retain their universal quantification. This
prevents us from using a rule like

father(X,Y), parent(Y,Z) <=> grandfathar(X:,Z).

with the desired results. If we do add this rule and assert gmnd-
father(john,mary), then Pfc will add the two independent asser-
tions father(john,-) (i.e. “John is the father of everyone”) and
parent(-,mary) (i.e. “Everyone is Mary’s parent”).

A final problem is associated with the use of the Prolog da-
tabase. Assertions containing variables actually contain “copies”
of the variables. Thus, when the conjunction

I27

father(X,Y), parent(Y.2) => grandfather(X,Z).
parent(X,Y), male(X) <=> father(X,Y).
parent(X.Y) <=> chi1dCY.X).
=> male(tom1.
=> parent(tom,tim).
=> child(clare,tim).
=> father(tim.peter).

Figure 2: A simple Pfc program in the kinship domain

predicate abbreviations:

deduced facts:
p=parent, kfather, m=male, gfzgrandfather, c=child, s=fcSupports

f (tor.tim).
c(tir,tom).
p(tir.clare).
p(tim.peter).

triggers:

1. pttf (A.B) .pt(p(B .C) ,rhs([gf (A.C)l))).
2. pt(ptA.B).pt(m(A),rhs(Cf(A,B)l))).
3. pt(f(A,B) ,rhs(Cp(A,B),m(A)I)).

11. pt(p(c1are.A) .rhs(Cgf (tim.A)I)).
...

tms relations:

..

Figure 3: The network of assertions produced by the sim-
ple kinship program

add(father(adam.X)), X=able

is evaluated, the assertion father(adam,,C032) is added to the
database, where -GO32 is a new variable which is distinct from
X. As a consequence, it is never unified with able.

4 Examples

This section gives two examples. The first uses the simple kinship
domain to show the network of TMS assertions generated from
a small set of assertions. Figure 2 shows a simple Pfc program
and Figure 3 shows a part of the resulting network of assertions
(we have abbreviated the names of the predicates and constants
t o make the depiction more compact.

Our second example shows how P f c can be used to provide
the representation and reasoning core of a simple diagnostic ap-
plication. Figure 4 shows a standard diagnostic problem that has
been used widely in the literature [S, 12, 4, 211. The problem is

to determine which components are faulty, given the description
of the structure of the circuit and the observed input and out-
put values. The general approach to this kind of problem is to
represent the circuit (i.e. the devices, their behavior, and the
connections) in the form of logical assertions and/or rules. The
representation indicates (implicitly or explicitly) that some of the
facts about the circuit are to be taken as assumptions (e.g. that
a device behaves as intended or that an observation is correct).

If all of the information about the circuit (structure, device
behavior and observations) is consistent, then there is no evidence
of a problem and no diagnosis is needed. If there is an inconsis-
tency, however, then one or more of the assumptions must be in-
correct. The diagnostic problem, then, can be expressed in terms
of finding “minimal” sets of assumptions to retract such that the
resulting set of known facts and assumptions is consistent (see
(91 for an overview of this approach).

Although Pfc was not specifically designed to solve diagnostic
problems, it turns out to provide some of the necessary represen-
tation and reasoning capabilities. The Pjc system supplies a good
way to describe a set of facts and to draw all possible conclusions
from them (the deductive closure) and to record the derivations
of these facts. The first capability is just what is needed to simu-
late the behavior of the circuit to be diagnosed and to identify the
conflicts that arise. The second capability allows the derivations
of these conflicts to be explored, looking for a set of assumptions
to be retracted.

The predicates t o represent such circuits are given in Figure 5.
In this scheme, a device is represented by a symbol. To indicate
that a device, d, is a kind of adder, we can add the assertion
isa(d,adder). The first Pfr rule in Figure 4 will then conclude
that d exhibits the behavior of an adder (i.e. adding the assertion
khawe(d,adder)) unless it is known that d is defective (i.e. unless
there is a fact matching fauZty(d)). When the fact that d behaves
like an adder is asserted, the fifth rule in this figure will add the
constraints (expressed as Pfc rules) which relate d’s inputs and
output.

5 Implementation

This section briefly describes the current implementation of Pfc .
The basic user predicates are add/l and rem/l. The add/l pred-
icate adds a new P f c fact or rule to the database, triggering any
forward chaining. Adding a new rule involves putting the rule’s
lhs into a modified conjunctive normal form and then adding one
or more triggers to the database. Conceptually, a trigger rep-
resents a demon which monitors the database, watching for the
addition or removal of an assertion which can unify with its head.
A trigger also has a condition which, if satisfiable, will enable the
“evaluation” of its body. For example, the rule

f ather(X .Y) ,parent (Y ,Z)=>grandf ather(X.Z) .
results in the following trigger being asserted into the database:

pt(father(A,B),
true,
pt(parent(E,C),

true,
rhs(Cgrandfather(A,C)I))).

I28

3.

Z b

2s

3 d

3.

a 12
(12)

Figure 4: A simple circuit to be diagnosed

X Devices behave as they should unless they are faulty.
isa(X,Class). -faulty(X) => behave(X,Class).

X a sire equates the values at its tvo ends.
vire(T1,TZ) -> (val(T1.V) <-> val(TZ,V)).

X It is a conflict if a terminal has two different values.
val(T.Vl), val(T,VZ)/{\+Vl-VZ> -> conflict(T).

% assume au observation is true.
observed(P), -false-observation(P) => P.

X an adder’s behaviour
behave(](.adder) ->
(val(ini(X),Il) ,val(inZ(X).IZ) -> {O is Il+IZ>,val(outtX),O)),
(val(ini(X),Ii) ,val(out(X).O) -> {I2 is O-Il>,val(inZ(X),IZ)).
(val(inZ(X) ,121 .val(out(X) .O) -> (11 is O-IZ>.val(ini(X) .I1)).

X a multiplier’s behaviour.
behave(X,multiplier) =>
(val(inl(X) .IO .val(inZ(X) ,121 => {O is Il*IZ>.val(out(X) ,011,
(val(ini(X) ,IO .val(out(X) .O) -> {I2 is O/Il>,val(inZ(X) .I2)),
(val(i~(X),I2).val(out(X),O) -> {I1 is o/IZ?,val(inl(X),Ii)).

X a gizmo is the standard example circuit.
isa(X,gizmo) ->
isa(ml(X) ,multiplier),
isa(mZ(X) ,multiplier),
isa(m3(X) ,multiplier),
isa(a1 (XI .adder),
isa(aZ(X) ,adder),
sire(out(ml(X)),inl(al(X))),
sire(out(mZ(X)) ,inZ(al (X))) ,
sirecout (m2(X)) .inl(aZ(X) 1).
sire(out (m3(X)) ,inZ(aZ(X) 1).

Figure 5: Pj. rules which s imulate t h e behavior of simple
circuits composed of adde r s a n d multipliers

Whenever a fact is added to the database (for the first time)
all positive triggers with unifying heads are collected and fired.
Firing a trigger means ensuring that its condition is satisfied
and processing the body. The body can be another trigger, a
conditional body, a “cut point”, or the rule’s rhs.

When the body of a trigger is another trigger, it is asserted
into the database with a note that it’s support comes from the
initial trigger and the unifying fact. Thus, in the above example,
when fnther(tom,tim,J is asserted, the trigger

pt (parent (tim, C),
true,
rhs (Cgrandf ather (tom. C)]))

is added to the database with support coming from the original
trigger and fact.

An item in the lhs of a rule can be an arbitrary condition
wrapped in braces, as in:

age(P1 ,AI), age(PZ,AZ), {Al>A2) => older(P1,PZ).

This provides additional flexibility in mixing forward and back-
ward reasoning and also makes the semantics of bi-conditional
rules sensible.

We are experimenting with a technique for pruning the tree
of triggers which grows from a rule and a stream of facts which is
being added to the database. This is analogous to the use of the
cut operation in Prolog and other logic programming languages.
For example, consider a rule which encodes the knowledge that
a person is a parent if they have offspring. We could write this
in Pjc as:

person(P) ,parent(P,-) => isParent(P).

However, this rule is somewhat redundant in that it records mul-
tiple justifications for the isparent conclusion. That is if a person
has six children, then there will be six justifications for the con-
clusion. In many applications, it is desirable to “prune” away
the other justifications, an operation similar to the “cut” in
logic programming languages. In Pfc the “!” symbol represents
such a pruning operation. We can write our rule as:

person(P1 ,parent (P,-), ! => isparent (PI.

Whenever the “!” is encountered in a rule instance, all ances-
tor triggers “frozen”. This effectively blocks any justifications
beyond the first. If the first justification is removed by the tms
system, the effective triggers will be “thawed”.

Finally, the trigger which represents the last condition in a
rule will have the rule’s rhs as its body. Similarly, whenever a
positive trigger is added to the database, it is “fired” for each
extant fact in the database with which it unifies. Consider the
€allowing rule which contains a negated fact in the lhs:

parent (Pi ,K) ,spouse(Pl ,P2) ,-parent (P2,K)
=> stepParent(P2,K).

This rule would generate the following trigger:

pt (parent,
true,
pt(spouse(Pi,P2),

I 29

t r u e ,
n t (parent (P2 .K) .

t r u e ,
r h s [s t e p p a r e n t (P2 , K) l)))

The nt/3 term represents a negative trigger which is immediately
satisfied if there is no unifying fact in the database. Whenever a
fact is removed from the database, all negative triggers with uni-
fying heads are gathered and, if their conditions are satisfiable,
fired. Conversely, whenever a fact is added to the database, a
search is made for justifications which include a negative trigger
whose head unifies with the newly added fact. Any such justifi-
cations are then removed.

The support for conclusions is recorded by the fcSupport/2
predicate. It has one of the following forms:

0 fcSupport((user,user),X) - where X is a user asserted rule
or fact.

0 fcSupport((Rule,user), Trigger) - where Rule is user-assert-
ed rule and Trigger is one of the resulting initial triggers.

0 fcSupport((Fact,Trigger),X) - where Fact is an atomic fact,
Trigger is a positive or negative trigger and X is a resulting
fact or another trigger.

These assertions are hidden from the user in a shadow database.
Other predicates exist for finding the immediate facts and

rules which support a given clause and for finding the set of “user
asserted” facts and rules which support a clause. These can be
used to construct the possible Pfc derivations of a clause.

6 Conclusions

This paper has described Pje a forward chaining facility for Pro-
log. Pfc is intended to be used in conjunction with ordinary
Prolog programs, allowing the programmer to decide whether to
encode a rule as a forward-chaining Pfc rule or a backward chain-
ing Prolog one. Like other logic programming languages, P J ~
programs have a declarative interpretation as well as clear and
predictable procedural one. A truth maintenance system is built
into Pfc system which maintains consistency as well as makes
derivations available for applications. Finally, Pfc is designed to
be practical, being relatively efficient and fairly unobtrusive.

We have begun to experiment with P f c are expecting to use
it in several Prolog-based applications requiring a forward rea-
soning facility. There are a number of issues which we intend to
examine in the near future. These include exploring additional
ways to control forward reasoning; devloping techniques for the
optimization and compilation of P f c programs; and exploring the
opportunities for the parallel execution of a “pure” subset of PfC

In summary, we have found that the P f c system effectively
extends Prolog to enable the use of a mixed backward and for-
ward reasoning strategy. This is done in a way that maintains
the advantages of using Prolog (as opposed to a more general
logic-based AI language) - simplicity, speed and portability.

References
[I] K E E Reference Manual. Intellicorp, level 3.0 edition, 1986.

[a] D. G . Bobrow and M. Stefik. The Loops Manual. Technical report KB-

[3] Johan de Kleer. An assumption-based TMS. Artificial Intelligence,

[4] Johan de Kleer and Brian C. Williams. Diagnosing multiple faults.

[5] Jon Doyle. The ins and outs of reason maintenance. In 81h International

[6] Jon Doyle. A truth maintenance system. Artificial Intelligence,
12(3):231-272, 1979.

[7] M. Genesereth et. al. MRS Manual. Technical Report, Stanford Uni-
versity, 1983.

[8] Randall Davis et. al. Diagnosis based on description of structure and
function. In Proc. National Conf. on Artificial Intelligence, AAAI,
CMU, Pittsburgh PA, August 1982.

Abductive reasoning in multiple fault
diagnosis. Artificial Intelligence Review, 3(2), 1989.

The OPS5 User’s manual. Technical Report CMU-CS-
81-135, Department of Computer Science, Carnegie-Mellon University,
1981.

[ll] Rich Fritzson and Tim Finin. Protem - A n Integrated Ezpert Systems
Tool. Technical Report 84, Logic Based Systems, Paoli Research Center,
Unisys, 1988.

[la] M. R. Genesereth. The use of design descriptions in automated diagno-

[13] D,avid A. McAllester. Reasoning Utilrty Package User’s Manual. Tech-

[14] Drew McDermott. D U C K : A Lisp-Based Deductive System. Technical

[15] Drew McDermott and Eugene Charniak. Introduction t o Artificial In-

[16] Drew McDermott and Jon Doyle. Non-monotonic logic I. Artificial

(171 Dennis Merritt. Forward chaining in Prolog. A I Ezpert, November 1986.

[la] Paul Morris. A forward chaining problem solver. Lcgrc Programming

[19] Nils Nilsson. Principles of Artificial Intelligence. Tioga Publishing Co.,
Palo Alto, California, 1980.

[20] Charles J. Petrie and Michael N. Huhns. Controlling Forward Rule
Inferences. Technical Report ACA-AI-012-88, MCC, January 1988.

[21] Raymond Reiter. A theory of diagnosis from first principles. Artificial
Intelligence. 32(1):57 ~ 96, 1987.

[22] Gerald 3. Sussman, Terry Winograd, and Eugene Charniak. Micro-
planner Reference Manual. Technical Report AIM 203a, MIT Artificial
Intelligence Laboratory, 1971.

[23] Richard Treitel and Michael Genesereth. Choosing directions for rules.
Journal of Automated Reasoning, 3(4):395-432, Dec. 1987.

VLSI-81-13, Xerox PARC, 1981.

28:127-162, 1986.

Artificial Intelligence, 32(1):97 - 130, 1987.

Conference on Artificial Intelligence, pages 349-351, 1983.

(91 Tim Finin and Gary Morris.

[IO] C. L. Forgy.

sis. Artificial Intelligence, 24:411-436, 1984.

nical Report. MIT Artificial Intelligence Laboratory, April 1982.

Report, Computer Science, Yale University, 1983.

telligence. Addison Wesley, 1985.

Intelligence, 13(1):41-72, 1980.

Newsletter, Autumn 1981.

I30

