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1 Introduction 

Prolog, like most logic programming languages, offers backward 
chaining as the only reasoning scheme. It is well known that 
sound and complete reasoning systems can be built using either 
exclusive backward chaining or exclusive forward chaining [19]. 
Thus, this is not a theoretical problem. It is also well understood 
how to “implement” forward reasoning using a backward chain- 
ing system and vice versa. Thus, this need not be a practical 
problem. In fact, many of the logic-based languages developed 
for AI applications [14,7,20,11] allow one to build systems with 
both forward and backward chaining rules. 

There are, however, some interesting and important issues 
which need to be addresses in order to provide the Prolog pro- 
grammer with a practical, efficient, and well integrated facility 
for forward chaining. This paper describes such a facility, Pjc , 
which we have implemented in standard Prolog. 

The Pfc  system is a package that provides a forward rea- 
soning capability to be used together with conventional Prolog 
programs. The Pjc inference rules are Prolog terms which are 
asserted as facts into the regular Prolog database. For example, 
Figure 1 shows a file of Pic rules and facts which are appropriate 
for the ubiquitous kinship domain. 

In the next section of this paper we will review the nature of 
forward chaining, motivations for using it and some of the issues 
one must address in a forward chaining system. We will then give 
an informal, example-based presentation of the Pjc language in 
the third section. The fourth section will give some more detailed 
examples of the use of Pfc  . Some of the implementation details 
are described in the fifth section. This paper concludes with a 
final section which summarizes our experiences and plans for the 
future. 

2 Forward Chaining 
I t  is well known that one can define sound and complete infer- 
encing systems which rely solely on either forward or backward 
reasoning. This is discussed in introductory AI texts [19]. It 
is equally well understood that there are good reasons why one 
might wish to rely on one or the other or a mixed strategy in prac- 

spouse(X,Y) <=> spouse(Y,X). 
spouse(X ,Y) ,gender(X ,G> ,IotherGender (G. GZ))=>gender(Y, GZ) . 
gender(P,male) <=> male(P). 
gender(P,female) <=> female(P). 
parent(X,Y),female(X) <=> mother(X,Y). 
parent(X.Y) ,parent(Y,Z) => grandparent(X,Z). 
grandparent(X,Y),male(X) <=> grandfather(X,Y). 
grandparent(X,Y),female(X) <=> grandmtherO(,Y). 
mother(Ma,Kid),parent(Kid,GKid) => grandmother(Ma,GKid). 
grandparent(X,Y),female(X) <=> grandmother(X,Y). 
parent(X,Y) .male(X) <=> father(X,Y). 
mother(Ha,X) ,mother(Ma,Y) ,{X\==Y) => sibling(X,Y). 

Figure 1: Examples  of Pj. Rules  which represent  common 
kinship relations 

tice [15, 231. This section reviews some of the reasons why one 
might want to apply certain knowledge in the form of forward- 
chaining rules and looks at some of the issues surrounding the 
design of a forward chaining facility. In particular, we will dis- 
cuss the importance of a truth maintenance system in a forward 
chaining system. 

2.1 Characterization of Forward Chaining 

The terms forwanl and backwad chaining are used somewhat 
loosely within the AI community, covering such disparate things 
as OPS5-like production systems to resolution-based theorem 
provers. In general, when one speaks of a forward chaining rule, 
one has in mind a rule of the form: 

P I P ~ * . . P ~ + Q I Q ~ . . * Q ~  

Informally, the Pj on the left hand side (lhs) of the rule form 
a set of conditions which, if satisfied, enable the rule for firing. 
When fired, the Q; on the rule’s right hand side (rhs) specify a 
set of actions which are to be carried out. Typically, the condi- 
tions correspond to the presence of assertions in a database of 
facts. A condition is satisfied if it matches some particular fact 
in this database. There is more variability on the meaning and 
character of an action in the rhs of a rule. In some systems, such 
as OPS5 [lo, 171, these can be arbitrary evaluable expressions. 
In others, such as MRS [7], the Q; are propositions which are 
t o  be added to the fact database. Even in this latter case, sys- 
tems differ as to whether the newly derived facts are persistent 
and are recorded into the global database [7, 141 or are held in 
a temporary extension to the permanent database (as in a list) 

Some of the ways in which the meaning of a forward chaining 
[181. 

rule can vary are: 

Are the constituents of the rule’s rhs actions t o  be per- 
formed or propositions to be added to the database? 
When the addition of a new fact to the database triggers 
some rules, should all of the rules be run or just one? If 
more than one is run, should the order be important? 
Should retracting database assertions be allowed? 
If retractions are allowed, how should they effect partially 

If retractions are allowed, should we perform “truth main- 
triggered rules? 

tenance”? 

Given that we are trying to provide a forward chaining facility for 
Prolog, some of these choices are fairly clear cut. The particulars 
of the package that we have designed are described in the sections 
to  follow. 

2.2 Motivations for Forward Chaining 

There are a number of situations in which a forward chaining 
control strategy is preferred over a backward chaining one. We 
will briefly mention the major ones. We will assume that we 
are discussing a forward chaining system in which the rhs’s of 
rules specify necessarily true facts which are to be asserted into 
the global database and remain there until explicitly retracted. 
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The usual reasons for choosing a forward reasoning strategy stem 
from the particular nature of the problem being solved. These 
include: 

space/time tmdeofls. If a problem involves solving the same 
goal frequently, it may be more efficient to express the rules 
for deducing that goal as forward chaining rules. This re- 
duces the computation while increasing the need for static 
memory. 
the shape of the inferential space. Forward chaining tends 
to involve less search than backward chaining when the 
ratio of premises to  conclusions is high. 
avoiding long deductive chains. Forward chaining is useful 
for avoiding long (or even infinite) deductive chains. 
dmwing all possible inferences. Many problems require one 
to draw all possible inferences from a set of axioms. For- 
ward chaining is an efficient way to  do this. 
alerting. A related situation is one in which we want to 
ensure that certain deductions are made as soon as possible, 
e.g. for purposes of alerting or monitoring. 

There are other reasons to consider using a forward chain- 
ing control structure, one of which we will briefly mention. It is 
sometimes very convenient to construct a logic program in which 
a subset of the database acts as the interface between two inde- 
pendent and “concurrent” subsystems. As an example, consider 
designing a system in which one subsystem maintains a model 
of a set of objects and their locations on a plane and another is 
responsible for maintaining a graphical display of these objects. 
One way to (loosely) couple these two subsystems is to have the 
first make database assertions which represent the properties of 
the objects and their locations. The second subsystem has a set 
of forward chaining rules which are triggered by the first subsys- 
tem’s assertions and cause the display to  be updated. This is 
similar to the notion of an actiue value found in many Lisp-based 
systems (e.g. Loops [2], KEE [l]). This was one of the chief 
ways in which the forward chaining (thante) rules of MICRO- 
PLANNER [22] were used. 

2.3 Truth Maintenance 

A forward chaining facility in a logic-oriented, rule-based system 
(as opposed to a production-rule oriented system like OPS5) has 
a special need for a truth maintenance system (TMS). Although 
a TMS can be used with a deductive language using any sort of 
reasoning strategy, most of the work in TMS systems is associated 
with forward reasoning [6, 5, 3, 16, 131. 

There are really two closely related reasons for this need: one 
“ezternal” and the other “internal”. The first (the “external”) is 
that we want, in general, to keep the database consistent. Con- 
sider a situation in which a forward chaining rule has made an 
inference based on the state of the database at some time and 
thereby adds a new fact to the database. If the database changes 
at some later time such that the earlier inference is no longer 
valid, then the conclusion may have to be withdrawn and the 
assertion removed from the database. This is not a problem in 
a pure backward-chaining system since conclusions are always 

drawn (and re-drawn, if necessary) with respect to the current 
state of the database. 

The second (“internal”) need for a TMS has to do with the 
particular implementational strategy we have employed. A rule 
with a conjunction on its lhs (i) can be rewritten as shown below 
(ii): 

(i) P, Q, R => S 
(ii) F => (9 => (R => SI) 

That is, as a rule with a atomic lhs (P) which, when triggered, 
adds a new rule which monitors for the remaining conjuncts from 
the original rule. In such a scheme, it is important to keep track 
of these derived rules which represent partially instantiated or 
triggered rules. If a database assertion supporting a partially 
triggered rule is erased, then the rule need to  be killed. This 
ensures that a rule will fire only if all of its required conditions 
are simultaneously true. 

A truth maintenance system is useful for reasons besides keep- 
ing the knowledge base consistent. A TMS typically records the 
proof derivations of all of the facts in the database. This is useful 
in a variety of ways, such as generating explanations, abductive 
reasoning and debugging. 

3 The Pfc language 

This section describes Pjc . We will start by introducing the 
language informally through a series of examples drawn from 
the domain of kinship relations. This will be followed by an 
example and a description of some of the details of its current 
implement at ion. 

Overview 

The Pfc  package allows one to define forward chaining rules and 
to add ordinary Prolog assertions into the database in such a way 
as to trigger any of the Pfc rules that are satisfied. An example 
of a simple Pfc  rule is: 

gender(P,male) => male(P) 

This rule states that when a fact unifying with gender(P, male) 
is added to the database, then the fact male(P) is true. If this 
fact is not already in the database, it will be added. In any 
case, a record will be made that the validity of the fact male(P)  
depends, in part, on the validity of this forward chaining rule and 
the fact which triggered it. To make the example concrete, if we 
add gender(john,male), then the fact male(john) will be added 
to the database unless it was already there. 

In order to make this work. it is necessary to use the predicate 
add/f rather than assert/l in order to assert Pfc  rules and any 
facts which might unify with a goal in the lhs of a P f c  rule. 

Compound Rules. A slightly more complex rule is one in 
which the rule’s left hand side is a conjunction or disjunction of 
conditions: 

parent(X,Y). female(X) => mother(X,Y) 
mother(X,Y); father(X.Y) => parent(X,Y) 
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The first rule has the effect of adding the assertion mother(X,Y) 
to the database whenever parent(X,Y) and femak(X) are si- 
multaneously true for some X and Y. Again, a record will be 
kept that indicates that any fact mother(X,Y)  added by the 
application of this rule is justified by the rule and the two trig- 
gering facts. If any one of these three clauses is removed from 
the database, then all facts solely dependent on them will also 
be removed. Similarly, the second example rule derives the par- 
ent relationship whenever either the mother relationship or the 
father relationship is known. 

In fact, the lhs of a P f c  rule can be an arbitrary conjunction 
or disjunction of facts. P f .  handles a rule like (i) by putting it 
into conjunctive normal form, resulting in the two rules given in 
(ii) below: 

(i) P, (Q;R), S => T 
(ii) P,Q,S => T 

P,R,S => T 

Bi-conditionals. 
tional rules, such as: 

Pfc has a limited ability to  express bi-condi- 

mother(P1,PZ) <=> parent(P1,PZ). female(P1). 

In particular, adding a rule of the form P<=>q is the equivalent 
to adding the two rules P=>q and q=>P. The limitations on the 
use of bi-conditional rules stem from the restrictions that the two 
derived rules be valid horn clauses. This is discussed in a later 
section. 

Condi t ioned Rules. It is sometimes necessary to add some 
further condition on a rule. Consider the following definition of 
sibling: “TWO people are siblings if they have the same mother 
and the same father. No  one can be his own sibling.” This 
definition could be realized by the following Pje rule 

mother(Ma.Pl), mother(Ma,P2), CPl\==P2), 
father(Pa,Pl), father(Pa,P2) 

=> sibling(P1 ,P2). 

Here we must add a condition to the Ihs of the rule which states 
the the variables PI and P2 must not unify. This is effected by 
enclosing an arbitrary Prolog goal in braces. When the goals to 
the left of such a bracketed condition have been fulfilled, then it 
will be executed. If it can be satisfied, then the rule will remain 
active, otherwise it will be terminated. 

Negation. We sometimes want to draw an inference from the 
absence of some knowledge. For example, we might wish to en- 
code the default rule that a person is assumed to be male unless 
we have evidence to the contrary: 

person(P), -female(P) => male(P). 

A lhs term preceded by a N is satisfied only if no fact in the 
database unifies with it. Again, the Pfc  system records a jus- 
tification for the conclusion which, in this case, states that it 
depends on the absence of the contradictory evidence. 

As a slightly more complicated example, consider a rule which 
states that we should assume that the parents of a person are 

married unless we know otherwise. Knowing otherwise might 
consist of either knowing that one of them is married to a yet 
another person or knowing that they are divorced. We might try 
to encode this as follows: 

parent (PI ,X) , parent (P2, X) , CPI\==P2), 
-divorced(Pl,P2), 
-spouse(Pl.PJ), CP3\==P2), 
-spuse(P2.P4), CP4\==PI) 

spouse(Pi,P2). 
=> 

Unfortunately, this won’t work. The problem is that the con- 
joined condition -spouse(Pl.P3), CP3\==P2) does not mean 
what we indended it to - that there is no P3 distinct from P2 
that is the spouse of P1.  Instead, it means that P1 is not mar- 
ried to any P3. We need a way to  move the qualification P3\==P2 
inside the scope of the negation. To achieve this, we introduce 
the notion of a qualified goal. A lhs term P I C ,  where P is a 
positive atomic condition, is true only if there is a database fact 
unifying with P and condition C is satisfiable. Similarly, a lhs 
term N P / C ,  where P is a positive atomic condition, is true only 
if there is no database fact unifying with P for which condition 
C is satisfiable. Our rule can now be expressed as follows: 

parent(PI,X), parent(P2,X)/(Pi\==P2), 
‘divorced(Pl.P2), 
-spouse(Pi .P3)/(P3\==P2), 
-spouse(P2.P4)/(P4\==Pi) 

spous.(P1,P2). 
=> 

Procedura l  Interpretat ion.  Note that the procedural inter- 
pretation of a Pfc rule is that the conditions in the lhs are checked 
from left to right. One advantage to this is that the programmer 
can chose an order to the conditions in a rule to minimize the 
number of partial instantiations. Another advantage is that it 
allows us to write rules like the following: 

at(Obj,Locl),at(Obj,Loc2)/CLocl\==Loc2) 
=> Cremove(at(Obj.Loc1))). 

Although the declarative reading of this rule can be questioned, 
its procedural interpretation is clear and useful - “If an object 
is known to be at location Locl and an assertion is added that it 
is a t  some location Loc2, distinct from Locl, then the assertion 
that it is at Locl should be removed.” 

T h e  Right  H a n d  Side of a Rule.  The examples seen so far 
have shown a rules rhs as a single proposition to be “added” 
to the database. The rhs of a Pfc rule has some richness as 
well. The rhs of a rule is a conjunction of facts to be “added” 
to the database and terms enclosed in brackets which represent 
conditions/actions which are executed. As a simple example, 
consider the conclusions we might draw upon learning that one 
person is the mother of another: 

mother(X.Y) => female(X), parent(X.Y), adult(X1. 

As another example, consider a rule which detects bigamists 
and sends an appropriate warning to  the proper authorities: 
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spouse(X.Y), spouse(X.Z), CY\==Z> => 
bigamist (X) , 
Cfonnat(”-N-w is a bigamist, married 

to both - w  and -v-n“,[X,Y,Zl)>. 

Each element in the rhs of a rule is processed from left to right 
- assertions being added to  the database with appropriate jus- 
tification and actions being executed. If an action can not be 
satisfied, the rest of the rhs is not processed. 

We would like to  allow rules to be expressed as bi-conditional 
in so far a possible. Thus, an element in the lhs of a rule should 
have an appropriate meaning on the rhs as well. What mean- 
ing should be assigned to  the conditional fact construction (e.g. 
P / Q )  which can occur in a rule’s lhs? Such a term in the rhs of a 
rule is interpreted as a conditioned assertion. Thus the assertion 
P / &  will match a condition PI  in the lhs of a rule only if P and 
PI unify and the condition Q is satisfiable. For example, consider 
the rules that says that an object being located at  one place is 
reason to believe that it is not at any other place: 

at (X, Li) => not (at (X ,  L2) )/LZ\==LI 

Note that a conditioned assertion is essentially a Horn clause. 
We would express this fact in Prolog as the backward chaining 
rule: 

not(at (X,LZ)) :- at (X,L1) .LI\==LZ. 

The difference is, of course, that the addition of such a condi- 
tioned assertion will trigger forward chaining whereas the asser- 
tion of a new backward chaining rule will not. 

The Truth Maintenance System 

As discussed in the previous section, a forward reasoning system 
has special needs for some kind of truth maintenance system. 
The Pfc  system has a rather straightforward TMS system which 
records justifications for each fact deduced by a P f c  rule. When- 
ever a fact is removed from the database, any justifications in 
which it plays a part are also removed. The facts that were jus- 
tified by a removed justification are checked to see if they are 
still supported by some other justifications. If they are not, then 
those facts are also removed. 

Such a TMS system can be relatively expensive to use and 
is not needed for many applications. Consequently, its use and 
nature are optional in Pfc and are controlled by the predicate 
pfcTmsMode/l. There are three possible cases: 

0 pfcTmsMode( full) - The fact is removed unless it has well 
founded support (WFS). A fact has WFS if it is a given or 
is supported by the user or by a justification all of whose 
justificees have WFS. This is the most expensive mode, 
since determining if a. fact has WFS requires detecting local 
cycles (see [15] for an introduction). 

0 pfcTmsMode(local) - The fact is removed only if it has no 
supporting justifications. 

0 p f cTmsMode(none) - The fact is never removed. 

A fact is considered to be a giwen if it is found in the database 
with no visible means of support. That is, if P f c  discovers an as- 
sertion in the database that can take paft in a forward reasoning 

step, and that assertion is not supported by either the user or 
a forward deduction, then a note is added that the assertion is 
assumed to be a given. This adds additional flexibility in inter- 
facing systems employing P f c  to other Prolog applications. A 
fact is supported by the user if it was directly asserted into the 
database via an explicit call to the add/ l  predicate. 

For some applications, it is useful to be able to justify actions 
performed in the rhs of a rule. To allow this, Pfc supports the 
idea of declaring certain actions to be undoable and provides the 
user with a way of specifying methods to  undo those actions. 
Whenever an action is executed in the rhs of a rule and that 
action is undoable, then a record is made of the justification for 
that action. If that justification is later invalidated (e.g. through 
the retraction of one of its justificees) then the support is checked 
for the action in the same way as it would be for an assertion. 
If the action does not have independent support, then P f c  tries 
each of the methods it knows to undo the action until one of 
them succeeds. 

In fact, in Pfc  , one declares an action as undoable just by 
defining a method to  accomplish the undoing. This is done via 
the predicate pfcUndo/2. The predicate pfcUndo(A1, A2) is 
true if executing A2 is a possible way to  undo the execution 
of Al. For example, we might want to couple an assertional 
representation of a set of graph nodes with a display of them 
through the use of P f c  rules: 

at (N ,XU) => IdisplayNode(N, XY)). 
arc(Nl,N2) => ~displayArc(N1,AZ~. 

pfcUndo(displayNode(N,XY).eraseNode(N,XY)). 
pfcUndo(displayArc(N1 ,NZ), eraseArc(N1,NZ) 1. 

Limitations 

The PfC system has several limitations, most of which it inher- 
its from its Prolog roots. One of the more obvious of these is 
that Pfc  rules must be expressible as a set of horn clauses. The 
practical effect is that the rhs of a rule must be a conjunction of 
terms which are either assertions to be added to the database or 
actions to be executed. Negated assertions and disjunctions are 
not permitted, making the following rules ill-formed: 

parent (X ,Y) <=> mother(]: ,Y) ;father (X ,Y) 
male(X) <=> -female(X) 

Another restrictions is that all variables in a Pfc  rule have 
implicit universal quantification. As a result, any variables in 
the rhs of a rule which remain uninstantiated when the 111s has 
been fully satisfied retain their universal quantification. This 
prevents us from using a rule like 

father(X,Y), parent(Y,Z) <=> grandfathar(X:,Z). 

with the desired results. If we do add this rule and assert gmnd- 
father(john,mary), then Pfc  will add the two independent asser- 
tions father(john,-) (i.e. “John is the father of everyone”) and 
parent(-,mary) (i.e. “Everyone is Mary’s parent”). 

A final problem is associated with the use of the Prolog da- 
tabase. Assertions containing variables actually contain “copies” 
of the variables. Thus, when the conjunction 
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father(X,Y), parent(Y.2) => grandfather(X,Z). 
parent(X,Y), male(X) <=> father(X,Y). 
parent(X.Y) <=> chi1dCY.X). 
=> male(tom1. 
=> parent(tom,tim). 
=> child(clare,tim). 
=> father(tim.peter). 

Figure 2: A simple Pfc  program in the kinship domain 

predicate abbreviations: 

deduced facts: 
p=parent, kfather, m=male, gfzgrandfather, c=child, s=fcSupports 

f (tor.tim). 
c(tir,tom). 
p(tir.clare). 
p(tim.peter). 

triggers: 

1. pttf (A.B) .pt(p(B .C) ,rhs( [gf (A.C)l))). 
2. pt(ptA.B).pt(m(A),rhs(Cf(A,B)l))). 
3. pt(f(A,B) ,rhs(Cp(A,B),m(A)I)). 

11. pt(p(c1are.A) .rhs(Cgf (tim.A)I)). 
... 

tms relations: 

.. 

Figure 3: The network of assertions produced by the sim- 
ple kinship program 

add(father(adam.X)), X=able 

is evaluated, the assertion father(adam,,C032) is added to the 
database, where -GO32 is a new variable which is distinct from 
X. As a consequence, it is never unified with able. 

4 Examples 

This section gives two examples. The first uses the simple kinship 
domain to show the network of TMS assertions generated from 
a small set of assertions. Figure 2 shows a simple Pfc program 
and Figure 3 shows a part of the resulting network of assertions 
(we have abbreviated the names of the predicates and constants 
t o  make the depiction more compact. 

Our second example shows how P f c  can be used to provide 
the representation and reasoning core of a simple diagnostic ap- 
plication. Figure 4 shows a standard diagnostic problem that has 
been used widely in the literature [S, 12, 4, 211. The problem is 

to determine which components are faulty, given the description 
of the structure of the circuit and the observed input and out- 
put values. The general approach to  this kind of problem is to 
represent the circuit (i.e. the devices, their behavior, and the 
connections) in the form of logical assertions and/or rules. The 
representation indicates (implicitly or explicitly) that some of the 
facts about the circuit are to be taken as assumptions (e.g. that  
a device behaves as intended or that an observation is correct). 

If all of the information about the circuit (structure, device 
behavior and observations) is consistent, then there is no evidence 
of a problem and no diagnosis is needed. If there is an inconsis- 
tency, however, then one or more of the assumptions must be in- 
correct. The diagnostic problem, then, can be expressed in terms 
of finding “minimal” sets of assumptions to retract such that the 
resulting set of known facts and assumptions is consistent (see 
(91 for an overview of this approach). 

Although Pfc was not specifically designed to solve diagnostic 
problems, it turns out to provide some of the necessary represen- 
tation and reasoning capabilities. The Pjc system supplies a good 
way to describe a set of facts and to draw all possible conclusions 
from them (the deductive closure) and to record the derivations 
of these facts. The first capability is just what is needed to  simu- 
late the behavior of the circuit to be diagnosed and to identify the 
conflicts that arise. The second capability allows the derivations 
of these conflicts to be explored, looking for a set of assumptions 
to be retracted. 

The predicates t o  represent such circuits are given in Figure 5. 
In this scheme, a device is represented by a symbol. To indicate 
that a device, d, is a kind of adder, we can add the assertion 
isa(d,adder). The first Pfr  rule in Figure 4 will then conclude 
that d exhibits the behavior of an adder (i.e. adding the assertion 
khawe(d,adder)) unless it is known that d is defective (i.e. unless 
there is a fact matching fauZty(d)). When the fact that d behaves 
like an adder is asserted, the fifth rule in this figure will add the 
constraints (expressed as Pfc rules) which relate d’s inputs and 
output. 

5 Implementation 

This section briefly describes the current implementation of Pfc . 
The basic user predicates are add/l and rem/l.  The add/l pred- 
icate adds a new P f c  fact or rule to  the database, triggering any 
forward chaining. Adding a new rule involves putting the rule’s 
lhs into a modified conjunctive normal form and then adding one 
or more triggers to the database. Conceptually, a trigger rep- 
resents a demon which monitors the database, watching for the 
addition or removal of an assertion which can unify with its head. 
A trigger also has a condition which, if satisfiable, will enable the 
“evaluation” of its body. For example, the rule 

f ather(X .Y) ,parent (Y ,Z)=>grandf ather(X.Z) . 
results in the following trigger being asserted into the database: 

pt(father(A,B), 
true, 
pt(parent(E,C), 

true, 
rhs(Cgrandfather(A,C)I))). 
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Figure 4: A simple circuit to be diagnosed 

X Devices behave as they should unless they are faulty. 
isa(X,Class). -faulty(X) => behave(X,Class). 

X a sire equates the values at its tvo ends. 
vire(T1,TZ) -> (val(T1.V) <-> val(TZ,V)). 

X It is a conflict if a terminal has two different values. 
val(T.Vl), val(T,VZ)/{\+Vl-VZ> -> conflict(T). 

% assume au observation is true. 
observed(P), -false-observation(P) => P. 

X an adder’s behaviour 
behave(]( .adder) -> 
(val(ini(X),Il) ,val(inZ(X).IZ) -> {O is Il+IZ>,val(outtX),O)), 
(val(ini(X),Ii) ,val(out(X).O) -> {I2 is O-Il>,val(inZ(X),IZ)). 
(val(inZ(X) ,121 .val(out(X) .O) -> (11 is O-IZ>.val(ini(X) .I1)). 

X a multiplier’s behaviour. 
behave(X,multiplier) => 
(val(inl(X) .IO .val(inZ(X) ,121 => {O is Il*IZ>.val(out(X) ,011, 
(val(ini(X) ,IO .val(out(X) .O) -> {I2 is O/Il>,val(inZ(X) .I2)), 
(val(i~(X),I2).val(out(X),O) -> {I1 is o/IZ?,val(inl(X),Ii)). 

X a gizmo is the standard example circuit. 
isa(X,gizmo) -> 
isa(ml(X) ,multiplier), 
isa(mZ(X) ,multiplier), 
isa(m3(X) ,multiplier), 
isa(a1 (XI .adder), 
isa(aZ(X) ,adder), 
sire(out(ml(X)),inl(al(X))), 
sire(out(mZ(X)) ,inZ(al (X) )) , 
sirecout (m2(X)) .inl(aZ(X) 1). 
sire(out (m3(X)) ,inZ(aZ(X) 1). 

Figure 5: Pj. rules which s imulate  t h e  behavior of simple 
circuits composed of adde r s  a n d  multipliers 

Whenever a fact is added to the database (for the first time) 
all positive triggers with unifying heads are collected and fired. 
Firing a trigger means ensuring that its condition is satisfied 
and processing the body. The body can be another trigger, a 
conditional body, a “cut point”, or the rule’s rhs. 

When the body of a trigger is another trigger, it is asserted 
into the database with a note that it’s support comes from the 
initial trigger and the unifying fact. Thus, in the above example, 
when fnther(tom,tim,J is asserted, the trigger 

pt (parent (tim, C), 
true, 
rhs ( Cgrandf ather (tom. C)] ) ) 

is added to  the database with support coming from the original 
trigger and fact. 

An item in the lhs of a rule can be an arbitrary condition 
wrapped in braces, as in: 

age(P1 ,AI), age(PZ,AZ), {Al>A2) => older(P1,PZ). 

This provides additional flexibility in mixing forward and back- 
ward reasoning and also makes the semantics of bi-conditional 
rules sensible. 

We are experimenting with a technique for pruning the tree 
of triggers which grows from a rule and a stream of facts which is 
being added to the database. This is analogous to  the use of the 
cut operation in Prolog and other logic programming languages. 
For example, consider a rule which encodes the knowledge that 
a person is a parent if they have offspring. We could write this 
in Pjc as: 

person(P) ,parent(P,-) => isParent(P). 

However, this rule is somewhat redundant in that it records mul- 
tiple justifications for the isparent conclusion. That is if a person 
has six children, then there will be six justifications for the con- 
clusion. In many applications, it is desirable to “prune” away 
the other justifications, an operation similar to the “cut” in 
logic programming languages. In Pfc  the “!” symbol represents 
such a pruning operation. We can write our rule as: 

person(P1 ,parent (P,-), ! => isparent (PI. 

Whenever the “!” is encountered in a rule instance, all ances- 
tor triggers “frozen”. This effectively blocks any justifications 
beyond the first. If the first justification is removed by the tms 
system, the effective triggers will be “thawed”. 

Finally, the trigger which represents the last condition in a 
rule will have the rule’s rhs as its body. Similarly, whenever a 
positive trigger is added to the database, it is “fired” for each 
extant fact in the database with which it unifies. Consider the 
€allowing rule which contains a negated fact in the lhs: 

parent (Pi ,K) ,spouse(Pl ,P2) ,-parent (P2,K) 
=> stepParent(P2,K). 

This rule would generate the following trigger: 

pt (parent, 
true, 
pt(spouse(Pi,P2), 
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t r u e ,  
n t (parent (P2 .K) .  

t r u e ,  
r h s  [ s t e p p a r e n t  (P2 , K ) l ) ) )  

The nt/3 term represents a negative trigger which is immediately 
satisfied if there is no unifying fact in the database. Whenever a 
fact is removed from the database, all negative triggers with uni- 
fying heads are gathered and, if their conditions are satisfiable, 
fired. Conversely, whenever a fact is added to  the database, a 
search is made for justifications which include a negative trigger 
whose head unifies with the newly added fact. Any such justifi- 
cations are then removed. 

The support for conclusions is recorded by the fcSupport/2 
predicate. It has one of the following forms: 

0 fcSupport((user,user),X) - where X is a user asserted rule 
or fact. 

0 fcSupport((Rule,user), Trigger) - where Rule is user-assert- 
ed rule and Trigger is one of the resulting initial triggers. 

0 fcSupport((Fact,Trigger),X) - where Fact is an atomic fact, 
Trigger is a positive or negative trigger and X is a resulting 
fact or another trigger. 

These assertions are hidden from the user in a shadow database. 
Other predicates exist for finding the immediate facts and 

rules which support a given clause and for finding the set of “user 
asserted” facts and rules which support a clause. These can be 
used to construct the possible Pfc  derivations of a clause. 

6 Conclusions 

This paper has described Pje a forward chaining facility for Pro- 
log. Pfc  is intended to be used in conjunction with ordinary 
Prolog programs, allowing the programmer to decide whether to 
encode a rule as a forward-chaining Pfc  rule or a backward chain- 
ing Prolog one. Like other logic programming languages, P J ~  
programs have a declarative interpretation as well as clear and 
predictable procedural one. A truth maintenance system is built 
into Pfc system which maintains consistency as well as makes 
derivations available for applications. Finally, Pfc is designed to 
be practical, being relatively efficient and fairly unobtrusive. 

We have begun to experiment with P f c  are expecting to use 
it in several Prolog-based applications requiring a forward rea- 
soning facility. There are a number of issues which we intend to 
examine in the near future. These include exploring additional 
ways to control forward reasoning; devloping techniques for the 
optimization and compilation of P f c  programs; and exploring the 
opportunities for the parallel execution of a “pure” subset of PfC 

In summary, we have found that the P f c  system effectively 
extends Prolog to enable the use of a mixed backward and for- 
ward reasoning strategy. This is done in a way that maintains 
the advantages of using Prolog (as opposed to  a more general 
logic-based AI language) - simplicity, speed and portability. 
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