OBD_SecureAlert: An Anomaly Detection System
for Vehicles

Sandeep Nair Narayanan, Sudip Mittal & Anupam Joshi
{sand7, smittall, joshi}@umbc.edu
University of Maryland, Baltimore County, Baltimore, MD 21250, USA

Abstract—Vehicles can be considered as a specialized form
of Cyber Physical Systems with sensors, ECU’s and actuators
working together to produce a coherent behavior. With the advent
of external connectivity, a larger attack surface has opened up
which not only affects the passengers inside vehicles, but also
people around them. One of the main causes of this increased
attack surface is because of the advanced systems built on top of
old and less secure common bus frameworks which lacks basic
authentication mechanisms. To make such systems more secure,
we approach this issue as a data analytic problem that can detect
anomalous states. To accomplish that we collected data flowing
between different components from real vehicles and using a
Hidden Markov Model, we detect malicious behaviors and issue
alerts, while a vehicle is in operation. Our evaluations using
single parameter and two parameters together provide enough
evidence that such techniques could be successfully used to detect
anomalies in vehicles. Moreover our method could be used in new
vehicles as well as older ones.

I. INTRODUCTION

According to US department of transportation [1]], 88% of
all people drive and there are 1.9 vehicles on an average in
each American household [2]]. Vehicles are an integral part
of our life and automobile technology has evolved over the
past century to address our growing needs. Earlier, a driver
had to manually control various functions in a vehicle, but
now a lot of these tasks have been delegated to various
micro-controllers and electronic chips attached to the vehicle.
Modern vehicles are a collection of various Electronic Control
Units (ECU), Sensor and Actuators. Some general purpose
control units present in a modern vehicle are Anti-lock Brake
System (ABS), Adaptive Cruise control, Active Suspension,
Active Vibration Control, Entertainment System, Lane Keep-
ing Assist, Electronic Power Steering, Adaptive Front lighting,
etc. These ECU’s get input from different sensors and perform
various mechanical actions using actuators. Apart from doing
their own functions, ECU’s must communicate between each
other so as to efficiently perform their functions. To ease inter-
controller communication, a common internal communication
bus was introduced. Bosch proposed the ‘controller area
network (CAN bus)’ and the updated specification, CAN 2.0,
was published in the year 1991 [3]]. In 1993, the International
Organization for Standardization released the CAN standard,
ISO 11898 [4], based on CAN 2.0 and was adopted as a
standard for inter ECU communication. Since the bus was
designed to be fast and simple, it lacked various authentication
schemes and non-repudiation mechanisms.

In the Internet-of-Things age, when we are increasingly
connecting various appliances to the global World Wide Web,
cars have not been left behind. Features like remote ignition
start, Internet enabled music devices, etc. are already present
in new vehicle models sold by various vendors. These features
are important advertising points used by car manufacturers to
set their vehicles apart. Adding these ‘ease of use’ features
can open multitude of attack surfaces which can be used to
directly affect the functionality of critical ECUs. Various ‘after
the market’ and plug-n-play devices can make existing on-road
vehicles also vulnerable. Hence we will need to address the
problem of securing these IoT enabled cars as new Internet
enabled functionality will be added in the near future.

CAN bus is a broadcast bus, where each connected ECU
pushes broadcast messages on it. These broadcast CAN mes-
sages don’t have explicit information about which ECU gen-
erated the message and any message available on the network
will considered as ‘trusted’ by default. As a result if any
malicious message is introduced into the network, either by
a malicious ECU or an attacker, will also be considered as
valid and can result in abnormal behavior. A newer protocol
can secure technologies in future cars, but they may not
be useful for on-road vehicles. We believe that detecting an
attack is the first step to secure them. Hence, we envision an
anomaly detection mechanism, OBD-SecureAlert which can
detect abnormal activities in new and ‘on-road’ vehicles. In
this paper, we first collected CAN message data from different
vehicles and used Hidden Markov Models to generate a model.
Our technique will then monitor various CAN messages to
detect anomalous states and generate alerts as required. It
is to be noted that we are creating an alert system and
not a preventive tool. Our system will not issue / process
a preventive action. Finally we used a progressive approach
for evaluation. We developed model using a single parameter
and using 2 parameters together and evaluated them against
multiple hand-crafted anomalous scenarios. Our evaluations
provide evidence that such a technique can be used to detect
attacks on vehicles.

In Section we discuss different approaches and tech-
niques trying to address the security issue. Section gives
a brief description and overview of our system. We present
their details in sections [V] and After discussing our
evaluation techniques in section we conclude the paper
and discuss future work in section [VIII}



II. RELATED WORK

In order to secure any given system there are two methods,
one is to prevent the attack and second is to detect and mitigate
potential risks. In this section we first discuss various tech-
niques to attack a vehicle. Then we discuss various techniques
to secure them.

A. Attack on Vehicles

One of the main reasons which enables attackers to in-
ject potentially malicious messages on CAN bus is that the
protocol lacks authentication mechanisms [3]. Researchers
tried to address this problem by using cryptography. Wolf et
al. [6] looked at the requirements of cryptographic functions
for car security. They proposed embedded solutions to add
cryptographic functions to different ECU’s which can provide
security against malicious manipulations. Hoppe et al. [7]
describe different attacks which are possible by malicious
modifications of ECU code. Using one such modification
they were able to open the car windows [8] automatically
when it reaches the speed of 200 kilometer per hour. These
vulnerabilities are severe since they directly affect passenger
safety. In another instance, they hacked comfort control unit
so as to control warning lights. Since comfort control ECU is
responsible for anti-theft functionality, they could have easily
disabled the alarm system to ease unauthorized entry to a
vehicle. Researchers were also able to manipulate ‘Airbag
Control Systems’ [7] in vehicles using a similar technique.
Koscher et al. [5] experimentally evaluated and demonstrated
various problems with the underlying system structure. They
illustrated how easy it was for a determined attacker to infil-
trate various ECU’s and circumvent different security systems.
They were able to attack various components like speedometer,
lights, brakes and doors locks.

Recently researchers were able to exploit the weakness
in a car system build on top of basic CAN network by
injecting malicious data into the internal bus. Effects of
their hack ranged from acts like switching the lights on, to
potentially fatal acts like applying brakes. Charlie Miller and
Chris Valasek demonstrated a hack by attaching an external
device [9]]. They demonstrated their recent work at Blackhat
2015, in which they hacked a Jeep Cherokee [10] remotely
without even attaching any external device. More reports [11]]
have come out listing various vehicles from popular car makers
like Volkswagen, Skoda, Volvo, etc. that are vulnerable to
another kind of crypto attack on key less entry.

B. Attack Prevention

Hazem and Fahmy [12] proposed LCAP, a light weight
CAN authentication protocol to secure CAN bus in which they
reduced communication overhead and computational complex-
ity associated with cryptography. In this protocol, they used
a ‘one-way hash function’ to generate a ‘magic number’
which is selected by the sender and can only be verified by
the receiver. Magic number would be sent either using the
extended identifier field” or as a payload over CAN bus.
Another authentication protocol is CANAuth by Herrewege et

al. [[13], which is backward compatible with the currently used
protocol. Apart from proposing a new protocol, they identified
different restrictions on CAN bus system like hard real-time
constraints, message length restriction, lack of bi-directional
communication, etc. In this protocol, authentication data is
transmitted out of band which provides a maximum length of
15 bytes for authentication message. LiBrA-CAN by Groza et
al. [[14] is yet another protocol to secure the CAN bus. Instead
of providing independent authentication for each sensor or
ECU, they assigned keys for a group of these devices. They
employed ‘key splitting’ and ‘MAC mixing’ in this protocol to
provide security. Apart from basic authentication scheme, they
also discussed several variations of their protocol which are
broadly classified as ‘master oriented authentication schemes’
and ‘distributed authentication schemes’.

C. Attack Detection and Mitigation

Koscher et al. [15] discusses the importance of ‘detection
mechanisms’ versus ‘prevention mechanisms’. They solidify
our hypothesis that, operational and economic realities in
the domain demands a detection strategy unlike prevention
strategies using cryptography mentioned above. Ruta et al. [16]
collected OBD data from CAN bus and analyzed it to infer
potential risk factors to provide users with warnings. In their
method they fused the OBD speed and RPM information with
external data like weather information, location information,
etc. using simple ‘data fusion’ algorithms to perform logic
based matchmaking. They inferred road and traffic conditions,
driving behavior, etc. and generated suggestions to minimize
risk factors. For example, their system suggests the driver to
use ABS and fog lamps along with slow driving if it detects
a foggy weather at a particular location.

D. Hidden Markov Models and their Applications

In our project we use Hidden Markov Models which are
quite popular for analyzing time series data. Hidden markov
models have been applied to many problems in various fields
like finance, bioinformatics, etc. Ziv et al. [17] successfully
applied it to analyze time series gene expression data to study
a wide range of biological systems. They stress that hidden
markov models help them to infer causality from temporal
response patterns and address the challenge of handling differ-
ent non-uniform sampling rates. Zhang et al. [[18] used hidden
markov models to analyze financial data. They take historical
multidimensional and complex nonlinear data from various
financial indexes and develop a hidden markov prediction
system to find a possible future value of a stock price. Guo
et al. [19] used accelerometer and GPS data to develop a
movement and behavior model for cattle by using hidden
markov models. The authors collected real data for individual
cows in the herd and then predicted their movements using
machine learning models.

As mentioned above Koscher et al. [15] described the
importance of a detection scheme due to practical issues.
Moreover the data analytics on OBD data [16] proves useful.
This leads us to believe that a machine learning approach can



provide us a method to detect abnormal vehicle behavior using
data from CAN bus.

ITI. SYSTEM ARCHITECTURE

Newer protocols require significant modifications to ECU
and sensor architecture. Accommodating these changes for
future vehicles could cause significant increase in manufac-
turing cost while for existing cars, modifying their existing
components would be harder or economically impractical.
Since it is possible to add third party gadgets, even to older
cars, we believe that it is extremely important to make the in-
vehicular network safe by detecting and possibly mitigating
potential attacks. Hence we envision a mechanism which is
applicable to older and newer vehicles at the same time with
minimum modification to the existing architecture.

In the current architecture different ECU’s communicate
with each other over CAN bus by broadcasting messages.
This communication generates a regular stream of messages
on the common bus. For our experiments we analyze mes-
sage streams from different ECU’s: Engine Control Module,
Electronic Brake control, Transmission Control, Body Control,
Telematics, Radio, etc. We then formulate these sequence of
events as a time series machine learning problem and use a
model to predict if the vehicle’s state is normal or abnormal.

We divide our work into 3 phases which we describe in the
following sections:

« Data Collection Phase: This is the first step in which the
stream of CAN bus data is collected from real vehicles
for analysis. We can employed the OBD-II port present
in most vehicles for this purpose.

e Model Generation Phase: In this phase we analyze the
collected data and generate a model. Since Hidden
Markov Models (HMM) can abstract the time series data,
we use them to model this scenario.

e Anomaly Detection Phase: This is the final phase in
which we detect anomalous behaviors using generated
model and posterior probabilities.

A. System Integration

Our model can be integrated with all current and future
car systems as a plug-n-play device or as a system module
programmed on the on-board car computer. We can add our
system to old cars using their pre-existing OBD port and
attaching a small raspberry-pie chip to the OBD port to collect,
analyze, and issue alerts. New cars can have this feature pre-
installed.

IV. DATA COLLECTION

To detect unsafe states of a vehicle, we first collect data
from the common bus. When a device want to communicate
with other components, it broadcasts a message on to the bus
with a specific message ID. The Figure [I] shows intercepted
CAN messages. Each message has a specific Message ID
(part before semicolon) and message data (part inside square
brackets). In a message, each device is identified by a Message
ID. It should be noted that each device connected to the CAN

bus will receive all messages. At the receiver end, only those
devices which need that message process it while others just
ignore it. To avoid two devices broadcasting simultaneously,
different priority mechanisms are used.

@1 18: [7E8 @4 41 18 @1 1E AA AA AA ]
@1 44: [VE8 @4 41 44 30 88 AA AA AA ]
81 84: [VEB 03 41 B84 3F AA AA AA AA ]
@1 @6: [7ES @3 41 96 84 AA AA AA AA ]
@1 @7: [7E8 @3 41 87 82 AA AA AA AA ]
@1 @B: [VE8 @3 41 BB 34 AA AA AA AA ]
@1 8C: [VEB @4 41 BC 8C 62 AA AA AA ]

Fig. 1: Intercepted CAN Messages.

The OBD port is connected to the common bus in order to
collect diagnostic information. So we can attach a device to it
and extract data for analysis. There are multiple tools in the
market like OBDLink Mx, Blue driver, CAN-BUS Shield and
ELM 327 clone devices which can be used to collect messages
from CAN bus. For our data collection, we used a STN1100
based OBDLink MX. STN1100 is a multi-protocol OBD to
UART interpreter integrated circuit. It has a 16 bit processor
with inbuilt flash memory and RAM. It supports the complete
AT command set (Command set for ELM 327 based chip-set)
along with a new set of ST commands. It supports different
protocols like ISO 15765-4 (CAN), ISO 11898 (raw CAN) and
SAE J1939 (Heavy vehicles). We used the device to interface
with OBD port and collected the data on CAN bus.

Using the above mentioned setup, we collected data from
vehicle of different manufacturers like “Honda”, “Toyota”
and “Chevrolet”. We faced some practical limitations while
collecting data from different cars. Many of these vehicle
manufacturers have different mechanisms which hinder direct
data collection. Some of the techniques include using multiple
CAN buses which are guarded by different gateways. Another
challenge is the use of non-standard CAN message ID’s by
different manufacturers. But these simple techniques won’t
hinder a malicious attacker. We were able to collect the
information from sensors which include speed, load, engine
coolant temperature, Engine RPM, Intake air temperature,
Absolute throttle position and O2 voltage.

V. MODEL GENERATION

We collected data by operating different vehicles and stored
it in a text file. Next step in our approach is to analyze
the collected data to develop a model which can identify
anomalous states. In this project, we use Hidden Markov
Models (HMM) to create a model. The intuition behind using
this model is described below. We consider the movement
of a vehicle as a sequence of states which are dependent
on its previous state, like Markov’s processes. For example
consider a sequence of activities from 77 to 772 as shown
in Figure 2] At T3 speed is zero and the Door is open. At
T5 the door is closed and it starts moving. The car gathers
speed gradually till 7s. But at T there is a sudden jump of
85 miles per hour making the speed to 100 mph. At T3 the



speed of car is 200 miles per hour and the door is open. We
can clearly see that the probability of a state change from
T to 17 and T to Tg are very low. This shows that we
can detect anomalous behaviors using a time series analysis.
We used HMM’s to create a model since they provide a
powerful abstraction to predict time series data. To create a
HMM model, we generate two set of probabilities, Transition
probabilities and Emission probabilities. Transition probability
controls how a new state, let’s say “S(t)”, is chosen from a
current state “S(t-1)”. Emission probability is the probability
that a specific set of observations will be generated given
current hidden state “S(t)”. During model generation we try
to estimate these probabilities using the collected data set.

Ti T2 T3 T4

=Speed 0 =Spaed 0 =5Speed 5 =Speed 10
=Door Open =Door Closed #=Door Closed =Daoor Closed
T2 7 TS T5

sSpeed 200 *Speed 100 =5peed 15 aSpeed 7
=Door Open =*Door Clased =Door Closed =Door Closed
T3 Ti0 Til1 Ti2

s5Speed 20 *Speed 10 =5peed 2 aSpeed 0
=[Door Closed *Door Closed =Door Closed =Dgar Open

Fig. 2: Sample Car Event Time-line

The first challenge for model generation is how to convert
collected data into a series of observations. Our dataset has
messages from multiple ECU’s. Instead of training the model
with absolute values, we chose to use gradients for each
observation, since it is the change in observations which alters
the state of a vehicle. For example in case of speed, instead
of using actual speed, we find speed gradients and train our
system for it. The next challenge is on how to accommodate
multiple observations as a single vector. We have different
types of sensors in a vehicular system. Some of them will
push data on to the CAN bus at regular intervals like speed
and RPM. On the other hand there are some other observations
which are pushed on to the system only when they are required
like door sensors in some vehicles.

In our model, we create a vector containing inputs from
different systems. Each vector will then represent a single
observation and our system will be trained for those obser-
vation sequences. We define the sequence of observations,
O = 04,04, ...0,, where Oy is an observation vector at time ¢.
Each observation vector Oy = {vs 1, v¢,2, ..Ut } Where vy ; is
the value of 7*" component at time ¢. For example Speed is 20
mph, RPM is 3000, State of door is closed etc. are modeled as
a single vector. During implementation, we interpret different
values from particular slots in the CAN message and convert
to decimal values before using them to train our model. To
generate the HMM model we used “Statistics and Machine
Learning toolkit” in Matlab. We use “hmmtrain” function to
generate the model from the sequence of observations O. We
chose to use Baum-Welch algorithm for training which will

generate Transition and Emission Probabilities corresponding
to test sequences.

VI. ANOMALY DETECTION

We generated emission and transition probabilities for the
HMM model using the data we collected from vehicles. In
this phase we use this generated model to detect anomalies.
By anomaly we mean a sudden deviation in the behavior
of a vehicle interpreted from data on CAN bus. As we
described earlier, we are not only detecting attack states, but
also any unsafe or anomalous states. For example, even though
it might not be caused by an attacker, opening of door at
200 mph is unsafe and hence we flag it. To detect unsafe

O=20=20F=0
O=L=0=0)F=
OO0 0-10

Fig. 3: Sliding Window For Anomaly Detection

states, we first convert the values from different components
into a sequence of observation vectors in the same way as
mentioned in section [V] We then use a sliding window of “m”
previous observations, Oyindow = {01, 02, ...0Omn} as shown
in Figure 3| to detect the presence of anomalies. The sliding
window moves every time a new observation is available. One
of the operations which we can do with HMM is to detect
posterior probability of a given sequence. In this case, once
the sliding window is determined, we use all observations
in that window and determine the posterior probability of
that sequence. As described before each of the observations
would be a vector of different sensor values. It will generate
a set of probabilities corresponding to each observation. If
the probability of any such sequence is below a threshold,
based on the generated model, it implies that probability of the
current set of observations is very low and hence we identify
it as an anomalous state.

We implemented our anomaly detection module using Mat-
lab. The anomaly detection module has the model as its first
input. In our implementation, the input stream from the CAN
bus is fed to this module. The module will convert it into a
sequences of observations using the same procedure we had
used during model generation phase. Now when new obser-
vations are available, the module will pick up “m” previous
observations from the sliding window and use “hmmdecode”
from Matlab to find the posterior probability for that sequence
in the window. Our module will now generate an alert, if the
probability of any observation in the sequence is going below
a set threshold value.

VII. EVALUATION & RESULTS

In order to evaluate our system, we need to verify that no
alerts are generated during normal conditions and also that,



alerts are generated during unsafe conditions. To test normal
conditions, we split collected data into two parts. The first
part is used for training the model and the second part is
used to verify if the model generates any false positives. For
evaluating the system to detect unsafe states, we created dif-
ferent scenarios by injecting unsafe data into actual collected
data. We had done a progressive evaluation scheme to test
the performance of our model. Our first evaluation used only
data from a single component. Further evaluations use more
than one values at the same time. We describe our evaluation
method and corresponding results below.

A. Single Observation Evaluation

Fig. 5: Test Data for Speed as a single observation

No Type Speed Result ‘ RPM Result
of Change | Alert Status Alert Status

1 ‘ T ‘ False ‘ v’ ‘ False ‘ v’

2 ‘ U ‘ False ‘ v’ ‘ False ‘ v’

3 ‘ ™ ‘ True ‘ v’ ‘ True ‘ v’

4 ‘ YU ‘ True ‘ v’ ‘ True ‘ v’

TABLE I: Single Observation Evaluation. f} - Gradual
Increase, 1} - Sudden Increase,
|} - Gradual Decrease |}{} - Sudden Decrease

We first trained our system only based on a single observed
value. We used data from speed sensor and RPM sensor
separately for this. Figure [5] represents a part of test data for
speed shown graphically. Each of the spikes in it represents
anomalous sudden change in speed caused as a result of
the introduction of anomalous data to real data collected
from vehicle. Ideally such a sudden spike is an unsafe state
according to our hypothesis. Our generated model was able

to detect each of those spikes. In order to make sure that this
will work not only for that particular observation, we tried it
with RPM sensor data shown in Figure E[ In a similar way the
spike represents a very sudden change in RPM. We should note
that the rate of change in RPM and Speed are different. RPM
can increase more rapidly than speed. But since our model
is based on real data collected from vehicles, it can detect
all those variation which will normally happen in them. The
results concluded from table [[ shows that anomalous changes,
which cannot correspond to the normal context of a car were
detected by our generated model.

B. Multiple Observations Evaluation

Since our model work well with single observations, we
evaluated our technique considering multiple observations
together in a vector. For this evaluation we chose the speed
and RPM observations together. Both speed and RPM values
are generated at regular intervals and hence we could map
every speed value with an RPM value. A part of the anomalous
values we generated and tested using our model is represented
in figure[6] The spikes represent different anomalous situations
which should not happen normally in a vehicle. We tested eight
different anomalous situations in it. Each one represents either
one or both of parameters being modified and can represent a
potential malicious state. For example at time 118, the speed
suddenly increases while the RPM value decrease, which is an
anomalous scenario in a normal running vehicle. Similarly at
time around 92 the RPM and speed increase abnormally. After
generating the model, we tested these different cases and the
evaluation results are described in table [l We can see that
each of such situations were detected by our model and hence
the results are promising. But we acknowledge the fact that
we need to test our method with more anomalous states of
varying degrees.

No | Speed | RPM | Alert Status | Result
T I True | v
2 | oo | ow | True | Vv
3w o | True | Vv
4w | e |V
50 m | =] T |V
6 | W | =] Tu | Vv

| = [ e | v
8 ‘ <= ‘ YU ‘ True ‘ v’

TABLE II: Multiple Observation Evaluation. {}{} - Sudden
Increase, {}{} - Sudden Decrease,
<=> - Normal (from Test data)

VIII. CONCLUSION & FUTURE WORK

In this paper we introduced OBD_SecureAlert. It is a system
which detects abnormal behavior in vehicles when they are
being operated. Our model can be integrated with all current
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Fig. 6: Test Data for RPM and Speed together

and future car systems as a plug-n-play device or as a system
module programmed on the on-board car computer. We suc-
cessfully extract data from various manufacturers like Toyota,
Honda and Chevrolet by attaching a device to their OBD port.
Using the collected dataset, we generated a Hidden Markov
Model for the prediction of anomalous states in vehicles. Our
initial results show that such data analytic techniques could be
successfully applied to identify anomalies and unsafe states
in vehicles. Unlike some other methods, our method could
successfully be utilized in both older and newer vehicles. We
plan to extend our work by analyzing a real attack for further
evaluations.

We can also further analyze the OBD data by applying other
data mining algorithms on it. A logical next step is applying
Conditional Random Fields and / or deep learning to gain
better insight.
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