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Abstract 
Memo functions and memoization are well-known 

concepts in A I  programming. They have been dis- 
cussed since the Sixties and are ofien used as ezamples 
in introductory programming texts. However, the au- 
tomation of memoization as a practical sofiware en- 
gineering tool f o r  A I  systems has not received a de- 
tailed treatment. This paper describes how automatic 
memoization can be made viable on a large scale. It 
points out advantages and uses of automatic memo- 
ization not previously described, identifies the com- 
ponents of an automatic memoization facility, enu- 
merates potential memoization failures, and presents 
a publicly available memoization package (CLAMP) 
f o r  the Lisp programming language. Experience in ap- 
plying these techniques in the development of a large 
planning system is  briefly discussed. 

1 Introduction 
Memo functions and memoization are well known 

concepts in AI programming. They have been dis- 
cussed since the Sixties and are often used as examples 
in introductory programming texts [15, 12, 13). The 
term “memoization” is derived from the term ‘memo 
function,” which was coined by Donald Michie 91. It 
refers to the tabulation of the results of a set of c 1 cula- 
tions to avoid repeating those calculations. Automatic 
memoization refers to a method by which an ordinary 
function can be changed mechanically into one that 
memoizes or caches its results. We place the decision 
about which functions to memoize in the hands of the 
user; this contrasts with the approach of Mostow and 
Cohen [lo], which tries to automatically infer which 
functions should be memoized. These two approaches 
to automatic memoization are not incompatible, al- 
though as Mostow and Cohen point out, the latter 
approach is not a practical tool. 

Memoization is particularly apt for AI applications. 
Rapid prototyping is a hallmark of AI programming. 
Automatic memoization allows the programmer to 
write certain functions without regard to efficiency, 
while being assured of reasonable performance. By al- 
lowing the programmer to avoide these efficiency con- 
cerns at the outset, automatic memoization facilitates 
the kind of exploratory programming used in the de- 
velopment of most AI systems. 

The principle of memoization and examples of its 
use in areas as varied as lo?; profammi2 v6, 6, 21, 
functional programming 41 an natur anguage 
parsing [ll] have been described in the literature. In 
all of the  case^ that we have reviewed, the use of 
memoization was either built into in a special purpose 
computing engine (e.g., for rule-based deduction, or 
CFG parsing), or treated in a cursory way as an ex- 
ample rather than taken seriously as a practical tech- 
nique. The automation of function memoization as 
a practical software engineering technique under hu- 
man control has never received a detailed treatment. 
In this paper, we report on our experience in develop- 
ing CLAMP, a practical automatic memoization pack- 
age for Common Lisp, and its use in a large-scale AI 
project. 

By means of illustration, consider the divided- 
difference algorithm dd, which is shown in pseudo- 
code in Figure 1. This algorithm is used to deter- 
mine coefficients of interpolated polynomials. The al- 
gorithm, which is a standard one in numerical meth- 
ods, is taken directly from Numerical Mathematics 
and Computing [l]. The application itself is not partic- 
ularly important; it is the run-time behavior of the al- 
gorithm that is of interest to us here. The call tree for 
the divided difference algorithm dd forms a network 
rather than a tree; thus, a recursive call to dd with par- 
ticular arguments may be repeated many times during 
a single computation. For example, a call to dd with 
low=l and high=lO will generate one recursive call 
with low=2 and high=lO and another recursive call 
with low=l and h i  h=9; each of these will in turn 
make a recursive calfwith low=2 and high=9. Mem- 
oization of dd causea each calculation to be performed 
only once and stored in a table; thereafter, each re- 
peated recursive call is replaced by a table lookup of 
the appropriate value. 

Figure 2 compares the performance of memoized 
and unmemoized versions of a Lisp’ implementation 
of the divided difference algorithm, using f(n) = 
T cos(n) and the first n natural numbers as arguments. 
Since a single function call on n points generates two 
recursive calls on n - 1 points, the unmemoized ver- 

‘Throughout this paper, we use the name Lisp to refer to 
the language Common Lisp, as described in Steele [14]. 
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; divided-difference algorithm 
dd(points: array, 

lov: array-index, 
high: array-index, 
fn: function) 

begin 
if low - high then 
else return (dd(points, lov+l, high, fn) - 
return fn(pointsClov1) 

dd(points, loo, high-1, fn)) / 
(pointschigh] - pointsClov1) 

end 

Figure 1: The divided difference algorithm for deter- 
mining coefficients of interpolated polynomials can be 
elegantly written using recursion and made efficient 
through the use of automatic memoization. 

n I Unmemoized I Memoized I Memoized I 1 
100 

I (first run) I (subsequent runs) 1 
0.0006 
0.0006 

0.22 0.0006 
0.0007 

173 0.4 0.0007 
Centuries 25.0 0.002 

Figure 2: This table shows the benefits of memoization 
on a Lisp implementation of dd. The time complexity 
is reduced from e(2") to O(n2)  for initial runs and to 
near-constant time on subsequent ones. 

sion has e(2") time complexity. After memoization, 
the first invocation requires O(n2) time, since no sub- 
sequence of points is calculated more than once, and 
there are (nz + n ) / 2  subsequences. Subsequent invo- 
cations take near-constant time. 

This algorithm for divided difference is typical of a 
large class of algorithms which have very elegant re- 
cursive definitions which are simply unusable for most 
real problems. The conventional response to this sit- 
uation is to manually rewrite the algorithm in a dy- 
namic programming style. Of course, such manual 
rewriting of the code takes effort and involves the risk 
of introducing new bugs. An attractive alternative is 
to use an automatic memoization package to convert 
the elegant but inefficient recursive algorithm into a 
useful one. This is attractive, of course, only if such 
a package can address the practical problems faced in 
real application. 

In the next section we describe the some of the as- 
pects and uses of automatic memoization not previ- 
ously described in the literature. Section three com- 

pares the use of automatic memoization to the alterna- 
tive of rewriting code by hand. Section four describes 
the general components that should be present in any 
automatic memoization facility. Section five presents 
problems inherent in the use of memoization and the 
various ways to address them. Section six describes 
our experience in using automatic memoization in in 
the development of SMS [17], a decision support sys- 
tem that provides submarine crews with situational 
awareness and operational advice to reduce detectabil- 
ity. 

2 Uses of Memoization 
There are four main uses of automatic memoiza- 

tion. Two of these involve the avoidance of redundant 
calculation, first, within a single function invocation, 
and second, across invocations. The third use of auto- 
matic memoization is as a pre-calculation tool, while 
the fourth is as a timing and profiling tool. These are 
not conjectured uses but ones which we found to be 
effective in many situations in a large, real-world AI 
application. We discuss each of these uses in more 
detail in the following subsections. 

2.1 Repetition within a Function Call 
The most common use of memoization is to avoid 

the repetition of sub-calculations within a single func- 
tion call. In the divided difference example presented 
above, there were many repeated recursive calls within 
a single function invocation. This type of repetition is 
common. For example, a simple recursive backtrack- 
ing parser may parse the same constituent many times 
during a single parse; thus its performance is poor. 
Norvig [ll] has shown that such an algorithm can ob- 
tain the performance of chart parsing [7 or of Earley's 

2.2 Repetition over Time 
In a team programming environment different sec- 

tions of a system, written by different programmers, 
may access the same function. Alternatively, in an in- 
teractive system the user may invoke calculations at 
different times that make use of some the same pieces. 
In these cases, there is no central routine which could 
manage the calling sequence to avoid repetition of the 
calculations. The only alternative to automatic mem- 
oization in such cases is to have the routine in question 
manage its own data structures to cache previous re- 
sults. 

2.3 Persistence 
The preceding subsections showed that memoiza- 

tion can eliminate the repeated invocation of expen- 
sive calculations. These two applications of memoiza- 
tion are useful when it is feasible to perform the first 
invocation of a function at run-time. Memoization is 
also useful when even the first invocation is too ex- 
pensive to perform at run-time. 

Use of functions that are too expensive to calcu- 
late a t  run-time is usually done by building a special 
purpose data file, and storing in it the results of an 
off-line execution of the expensive routine. Then, the 
function in question is modified to access that file. 

algorithm [3] through the application o r memoization. 
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Automatic memoization provides a method to pre- 
calculate a function without the overhead of a hand- 
crafted solution. In such situations automatic mem- 
oization eliminates the need for the programmer to 
know which ranges of values are stored in the data 
file, and which must be calculated. To achieve persis- 
tence of an expensive function, the function is mem- 
oized and then run off-line on the cases of interest. 
The contents of the hash table are then saved to disk. 
The saved file is later used to seed the hash table for 
the function when it is reloaded. 

There are two additional advantages of this type 
of memoization beyond providing the ability to pre- 
calculate a function. First, it allows the elimination 
of functions from the run-time system in cases where 
all possible inputs to the memoized function are pre- 
calculated. Second, the input values to the memo- 
ized function are determined automatically. That is, 
the pro rammer does not have to specify the range 
of possi%le inputs to the memoized function. In fact, 
this solution works even if the programmer has no idea 
which input values will be used. 

2.4 Timing and Profiling 
Finally, automatic memoization can also used as 

a profiling and timing tool. Many programming lan- 
guage systems provide a profiling facility whereby the 
user can see the time that a top-level function spends 
in various lower-level routines. This is important for 
directing optimization efforts. However, these profilers 
generally require significant overhead. For example, a 
fully-metered Lisp run on a Symbolics Lisp machine 
can take thirty times longer than an unmetered run. 
This does not include the time required to load the 
metering system. The expense of metering is worth 
the effort for important cases, and is a valuable soft- 
ware engineering tool. In smaller cases, however, auto- 
matic memoization provides a quick but rough method 
for determining which routines to optimize. Rather 
than running the fully metered system, users interac- 
tively memoize certain functions, then repeat the orig- 
inal test case twice. If the timing for the second case 
improves only by, for example, five percent, then for 
that test case, no amount of optimization in the rou- 
tines in question will provide more than a five percent 
speedup. If on the other hand a great speedup is seen, 
then the memoized functions are good candidates for 
optimization. 

3 Alternatives to  Automatic Memoiza- 

There are three alternatives to automatic memo- 
ization for eliminating repeated calculation: hand- 
crafted memoization, dynamic programming, and de- 
velopment of a new algorithm. First, memoization 
need not be automated. Memoizing a routine by hand 
could conceivably result in minor efficiency gains over 
automated memoization. Second, in some cases an 
ordering can be found for the calculations to be per- 
formed such that full memoization is not needed. For 
example, in Volume 2 (Seminumerical Algorithms) of 
his The Arl of Computer Programming [8], Knuth 

t ion 

presents a straightforward method for calculating di- 
vided differences in the proper order to get the same 
performance as the first invocation of the memoized 
version presented in the Introduction. Finally, a new 
algorithm for a iven task can be sought that does not 
require repeatet calculations. 

Automatic memoization is not a substitute for find- 
ing the proper algorithm for a task. However, when 
the major benefit of the development of a new al- 
gorithm is a savings in repeated calculations, auto- 
matic memoization of an existing algorithm has sev- 
eral advantages. These advantages also recommend 
automatic memoization over the other approaches de- 
scribed above. They fall into three categories: quality 
of solution, ease of use, and additional uses of memo- 
ization. 

3.1 Quality of Solution 
Automatic memoization usually leads to short, 

clear implementations, because the code to implement 
the efficiency improvement does not appear in the 
body of the function being improved. F’urthermore, 
if the function to be memoized has already been writ- 
ten and debugged, the use of automatic memoization 
does not risk the introduction of bugs into the function 
to the same degree that developing new code for the 
task does. This last point is especially important in 
the development of large, complex system where there 
is a natural reluctance to change routines that have 
already been tested and verified, especially if that will 
require changes in multiple places in the code. Fur- 
thermore, because it is simple to  switch back and forth 
between the memoized and unmemoized versions, it is 
easy to compare the performances of the two versions. 

3.2 Ease of Use 
In most languages automatic memoization can be 

implemented so that it is simple to memoize and un- 
memoize functions. None of the alternatives to auto- 
matic memoization can boast such a light load on the 
programmer. Again, this ease of use depends in part 
on avoiding the requirement of writing, debugging and 
eventually maintaining new code. This ease of use is 
especially important in artificial intelligence applica- 
tions, because the design of such applications tends to 
change rapidly and frequently. 

3.3 Additional Uses 
While the alternatives to automatic memoization 

mentioned above eliminate repeated calculations, they 
do not, in general, provide the other benefits of auto- 
matic memoization, i.e. persistence of cached values 
and usefulness as a timing and profiling tool. It would 
be possible, of course to build in some of these fea- 
tures such as a persistent cache mechanism. However, 
the automatic memoization approach requires us to do 
this only o n c e i n  the general memoization facility. 

The result of these benefits is that automatic 
memoization offers significant practical advantages in 
buildin real systems. Hall and Ma eld [5] describe 

plied to the development of the SMS system. 
some of these advantages in more ;F etail as they ap- 
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(+ 1 (cond ((I n 1) 0 )  
((evenp n) (Hailstone (/ n 2 ) ) )  
(t (Hailstone (+ 1 (* 3 n ) ) ) ) ) ) )  

Figure 3: The Hailstone function appears to be a 
good candidate for memoization, but it is not. 

4 Components of an Automatic Mem- 
oization Facilitv 

I 

Based on our experience in developing and using 
CLAMP, we have identified characteristics that any 
automatic memoization facility should have. Auto- 
mated memoization of some sort can be implemented 
in most languages. Languages that provide the user 
with an interactive run-time environment (such as 
Lisp, Dylan and ML) must have either run-time func- 
tion name resolution or a patchable code segment to 
allow automated memoization. Languages that are 
strictly compiled (such as most implementations of C )  
must be augmented with some sort of preprocessor to 
allow automated memoization. 

Three types of control functions make up a useful 
memoization package: memoization and unmemoiza- 
tion functions, cache control functions, and statistics 
reporting functions. We will discuss each in turn. 
4.1 Memoization Control 

First, the system must provide the user with a va- 
riety of methods to easily memoize and unmemoize 
functions. These methods should allow both absolute 
control over memoization (e.g. memoize a function, 
unmemoize a function, unmemoize all functions), and 
also, if possible, temporary memoization commands 
(e.g. treat a function as memoized while evaluating a 
particular expression, treat a function as unmemoized 
while evaluating a particular expression). 

It is important to allow the programmer to exper- 
iment with the effects of memoization in the context 
of his or her program. It is not always obvious what 
impact memoizing a function will have. For example, 
at first glance, the Hailstone function shown in Fig- 
ure 3 looks to be a good candidate for memoization, 
but experimentation shows no benefits from doing  SO.^ 
4.2 Cache Control 

Second, the system must provide methods to con- 
trol individual memoization caches, both for a single 
session and across sessions. Most important is the 
ability to explicitly clear a cache, thereby forcing all 
function return values to be re-calculated. Persis- 
tence is provided by allowing the user to instruct that 
a cache be saved to disk, and in a later session, to 
instruct that such a saved cache be read from disk. 

*Of come, some careful reasoning will also lead a program- 
mer to the same conclusion, but not all programmers will have 
the time and experience to do this type of analysis. 

Ease of use concerns dictate that these methods be 
activated by referring to the name of the memoized 
function, and not to the name of a disk file or to some 
other internal data structure. 
4.3 Data Control 

Finally, the memoization package should provide 
routines that report statistics collected while a memo- 
ized function is running. These statistics should in- 
clude the number of times a memoized function is 
called, and the number of times that such invocations 
result in the return of a cached value. The user should 
also be allowed to reset these statistics in preparation 
for a new run. 

5 Memoization Failures 
A major advantage of automatic memoization is its 

transparency. However, an overly-transparent view 
can lead to problems. While some aspects of these 
memoization failures have been discussed in the liter- 
ature (notably by Mostow and Cohen [lo]), most have 
not. Instead, we learned them the hard way in using 
the evolving CLAMP system through the experiences 
of AI programmers using the facility over the course 
of several years in developing the SMS system. 

The most common criticism of automatic memo- 
ization that we hear from programmers who have not 
used it is that the use of a technique that cannot 
guarantee correct results after its application is out 
of the question. This complaint is unfounded. As a 
counterexample, a technique that is widely-used by 
C programmers is function in-lining through macro 
expansion. Such macro expansion is not guaranteed 
to produce the correct results in all cases. However, 
because the programmer controls when macros are ap- 
plied, the technique can be used profitably. It is for 
this reason that we advocate programmer control over 
the selection of functions for memoization. In the fol- 
lowing subsections, we describe the potential pitfalls 
we have encountered in making decisions about which 
functions to memoize. 
5.1 Cache Consistency 

Memoization is used to avoid recalculation when a 
function is invoked with arguments it has seen previ- 
ously. Direct changes to the function should result in 
the memoization cache being flushed automatically, 
as presumably it will then contain incorrect values. 
This situation is relatively easy to detect. More diffi- 
cult to detect is the alteration of one or more of the 
sub-functions that the memoized function calls. There 
are several ways to alleviate this problem. The best 
method would be for each memoized function to keep 
a list of all functions in its call tree, and require that 
the cache be flushed when any of those entries is mod- 
ified. This could not be done automatically a t  run- 
time without the use of special data structures in the 
unmemoized functions; this capability is unlikely to be 
adopted in most programs. In many cases, a proper 
use of modularity will indicate how far changes are 
likely to propagate. Since the user always has access 
to a list of the currently memoized functions, a warn- 
ing to check the list whenever changes are made is of- 
ten sufficient. This is a trade-off. One of the goals of 
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an automatic memoization facility is to provide tools 
that are easy for the programmer to adopt. If using 
memoization requires invasive changes to unmemoized 
routines, this goal will be compromised. 

However this problem is addressed within a single 
session, it is usually not a problem across sessions. 
Run-time changes to functions usually occur during 
development. If caches are not saved to disk, the mem- 
oized routines will once again calculate correct values 
the next time the system is loaded. 

Caches that are saved to disk present a more seri- 
ous problem. In some senses, such caches are no differ- 
ent from normal data files, and the same problems of 
outdated versions apply. No fully automated solution 
will guarantee consistency, short of a system builder 
that forces recalculation of all saved values whenever 
there are changes in any code on which the function 
depends. This is not an unreasonable option during 
development, since the memoization facility makes it 
easy to save entries. Off-line calculations can be per- 
formed at regular intervals. However, there is still an 
incentive to limit these calculations, since their time- 
consuming nature is what led to saving the tables to 
disk in the first place. 

One way to limit the likelihood of inadvertent use 
of obsolete values semi-automatically is to periodically 
recalculate memoized values. First, the programmer 
specifies a percentage of the entries that are to be re- 
calculated on loading the hash table, and/or a percent- 
age of times where the memoized function will invoke 
the original function even though its arguments have 
been seen before. In each case, these recalculated val- 
ues are compared to the original ones; a warning is 
given if the results are not identical. Load-time recal- 
culation may not be possible, of course, since all the 
routines needed for a calculation may not be available 
when the function is defined. Similarly, run-time re- 
calculation may not be desirable, even with a very low 
percentage specification, if the system is counting on 
a given level of performance. Even if both techniques 
are used, they do not guarantee that all obsolete values 
will be found. Thus, these techniques should be used 
as a complement to other software engineering tech- 
niques (such as explicit maintenance of dependencies), 
rather than as a replacement for them. 
5.2 Non-Functions 

Memoization only works for true functions, not pro- 
cedures. That is, if a function’s result is not com- 
pletely and deterministically specified by its input pa- 
rameters, using memoization will give incorrect re- 
sults. The number of functions that can be memo- 
ized successfully will be increased by encouraging the 
use of a functional programming style throughout the 
system. 
5.3 Modification of Results 

Inherent in the idea of memoization is that data is 
stored, rather than calculated anew each time a func- 
tion is called. Thus, memoized functions can return 
results that share structures, even if the unmemoized 
version always creates new structures. Even without 
memoization, operations that modify function results 
are dangerous from a software engineering perspective. 

A common problem is that such routines will work fine 
when first written, but will make subsequent modifica- 
tions difficult. However, in some cases they can lead 
to efficiency gains; with care, programmers can use 
them to speed up the functions that can really benefit 
from their use. Unfortunately, the transparent view of 
memoization breaks down when used with such rou- 
tines. 

For instance, suppose that function Raw-Data re- 
turns a newly-created list of numbers. It is called by 
the function Normalized-Data, which destructively 
removes the maximum and minimum entries from the 
list before returning it. Prior to memoization, this 
might be perfectly safe. After memoizing Raw-Data, 
however, each subsequent retrieval of supposedly iden- 
tical data values might in fact receive a shorter list. 
Avoiding this problem not only requires the user of 
memoization to know how the function to be mem- 
oized works, but also how it will be used by other 
functions. This is often a difficult task; an easier ap- 
proach is to tighten the standards on when modifying 
operations are allowed, and to require increased doc- 
umentation for those functions that truly need to use 
them. 

5.4 Compiler Optimization of Recursion 
Some compilers will optimize the code they output 

by converting tail-recursion to iteration. Such opti- 
mization eliminates the recursive function call, but not 
the work required to calculate the function’s result. 
Since memoization relies on explicit function calls to 
activate its table-lookup, such optimization will by- 
pass the memoization process. To avoid this prob- 
lem, the compiler must be instructed not to eliminate 
tail-recursion in memoized routines. Compilers that 
do optimize tail-recursion usually provide an appro- 
priate compiler directive, for use by the memoization 
machinery. 

A more subtle optimization is sometimes made by 
compilers for languages that resolve function names 
at run-time. Such compilers will often bypass the 
name resolution process for direct recursion. When 
memoization is implemented by binding the memoized 
function to the original function name, this once again 
results in a circumvention of the memoization table- 
lookup. The function will still return correct results, 
but the computation savings provided by memoization 
will be lost. It is less common for a compiler to give 
the user explicit control over this kind of optimization. 

Note that this problem can eliminate some, but not 
all, of the advantages of memoization. Although the 
results of the optimized-away recursive calls will not 
be cached, the results of the top-level calls will be 
cached. In the terms of the use categories described 
in Section 2, the benefits of repetition within a function 
call are lost but those due to repetition over tame are 
not. 

5.5 Recognizing Call Equivalence 
Memoization is performed by doing an exact match 

on the argument list, using the Lisp function equal by 
default. If function Foo is defined as: 

(defun Foo (&key ( B a r  2) ( B a z  3) . . .) 

91 



and is memoized, all of the following will be treated 
as distinct, even though the parameters have identical 
values in all cases: 

(Foo) 
(Foo : B a r  2) 
(Foo : B a r  2 : B a z  3) 
(Foo :Baz 3) 
(Foo : B a z  3 : B a r  2) 

Similarly, one can have counterintuitive results 
when the arguments are floating point numbers, for- 
getting that, for instance, 2 is not equal to 2.0, and 
1.234567 is not equal to 1.23456, even though the 
function may treat them as identical. The solution 
adopted by the SMS program is to introduce “wrap- 
per” functions that take keyword arguments, floating 
point numbers, etc. ,  canonicalize the arguments into 
some common form, then pass them on to an internal 
function that takes only required arguments in the 
standard format. It is this internal function that is 
then memoized. 
5.6 Cache Value Representation 

In the current system, the routines that save data to 
disk do so by printing the representation of the object 
using format, directing the output stream to a file. 
This means that Lisp objects whose print representa- 
tion cannot be parsed by read cannot be saved to disk. 
Some objects such as CLOS instances and structures 
allow the definition of a custom print function, and 
this can sometimes be used to save them to disk. But 
this is not a general mechanism, and special-purpose 
code will need to be written in those cases. 

6 Experience and Evaluation 
The Signature Management System (SMS) is a de- 

cision aid for submarine crews that provides situa- 
tional awareness and operational advice to  help the 
ship reduce its overall detectability. It has been devel- 
oped over the last five years under ARPA funding at 
the Johns Hopkins University Applied Physics Labo- 
ratory (JHU/APL). Outside of APL, team members 
have come primarily from industry, with eight corpo- 
rations and two universities on the development team. 
The system combines a variety of representations in- 
cluding frames/objects, production rules, mathemati- 
cal models, and procedural code. About 75% is writ- 
ten in Common Lisp, with the remainder in C; it runs 
on UNIX platforms. 

The automatic memoization system was used in the 
SMS program by at leastl;ix Lisp developers from 
three different companies. Permanent” memoization 
( i . e .  uses other than profiling) remains in the released 
system in 25 places. However, use as a first-cut pro- 
filing tool was one of the most common uses of memo- 
ization. All four uses described in Section 2 were used 
extensively by multiple programmers. 
6.1 SMS Magnetics Module 

Figure 4 gives timing statistics for a magnetics 
module used in the Signature Management System, 
timed after various uses of memoization were put into 
effect. Ignoring the benefits when the user asks for 
the same display at different times (which is in fact 
quite common), Figure 4 gives a summary of the time 

aspect 

+ conventional optimization 
unmemoized original 

Time (sec) Speedup 
48 1.0 
36 1.33 

I +repetitions over time I 24 I 2.0 I 
+ dynamic programming 1 2 I 24.0 
+ saved memoization tables I 0.001 I 48,000 

Figure 4: These figures show the cumulative effects of 
the different aspects of automatic memoization on a 
magnetics module used in the Signature Management 
System. 

benefits of memoization on the first time invocation 
of the top-level display. Times are in seconds, and 
are conservative approximations. Similar results were 
obtained with other modules. 
6.2 SMS Detectability Planning Display 

Given the diverse uses of memoization by various 
programmers on the SMS program, we attempted to 
estimate the overall contribution of memoization to 
the system. For instance, one of the displays used as 
an aid to  planning submarine operations in the SMS 
system shows the predicted probability of detection 
of the submarine for various choices of heading and 
speed, drawn on a polar plot with the angle (theta) in- 
dicating heading (0 corresponding to due north), and 
the radius (r) corresponding to speed. Each (r,theta) 
pair (arc) in the display is coded with a color indicat- 
ing the cumulative probability of detection for the sub 
if it were to  operate at the indicated course and speed. 

This display is used as a high-level tool in plan- 
ning, and thus includes highly summarized informa- 
tion. It presents a single number for probability of 
detection which is a composite of all the potential de- 
tection methods or signatures. The user frequently is 
interested in the contribution of individual signature 
components to this composite. Since the probability 
of detection of each component is memoized before it 
is combined into the composite, any component cor- 
responding to a point on the display can be retrieved 
almost instantly. Taking advantage of this, the dis- 
play of can be maintained with virtually no additional 
computation. 

Whenever the user moves the mouse over the com- 
posite detectability display, the corresponding speed 
and course for the point under the mouse is calculated. 
Then, the individual components are calculated, with 
their relative values shown in the bar charts. Due to 
the effects of memoization, the component values can 
be calculated and graphed as quickly as the user can 
move the mouse. 

The system was run from this display in the default 
mode and then with all memoization turned off. The 
results, given in Figure 5 show a 631x improvement 
in speed, and a 4 , 8 2 2 ~  improvement in the amount of 
temporary memory (garbage) allocated. Benchmarks 
are notoriously misleading, and in many places the 
code would have been written dramatically differently 
if memoization had not been available. Nevertheless, 
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- version time bytes consed 
unmemoized 2562.74 sec. 2,969,392,724 

memoized 4.06 sec. 615.784 

Figure 5: Dramatic improvements in execution time 
and consing were obtained in the overall SMS system. 

the results are illuminatin especially since they rep- 
resent improvements over tke original baseline system. 
Because the computation of this summary display rep- 
resents the final, high-level computation of the entire 
system it is a reasonable way to measure the contri- 
bution of the use of automatic memoization. 

7 Conclusions 
Automatic memoization is a powerful tool that al- 

lows many simple but inefficient algorithms to be 
made useful in practice. Beyond this basic advan- 
tage though, automatic memoization provides other 
significant advantages to the artificial intelligence pro- 
grammer. These advanta es include the ability to add 
persistence to a memoizet function, and the ability to 
perform timing and profiling studies rapidly. These 
advantages far outweigh the potential pitfalls of au- 
tomatic memoization in artificial intelligence applica- 
tions, because of the prevalence of a rapid prototyping 
approach in such projects. 

Source code for the CLAMP system is available via 
anonymous FTP (ftp: /ftp.cs.umbc.edu or by email 

available on the Internet Lisp archives at CMU, and 
is part of the CMU AI CD-ROM. 

via a request to (hall d cs.umbc.edu). C 2 AMP is also 
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