
Using Automatic Memoization as a Software Engineering Tool
in Real-World AI Systems

James Mayfield Tim Finin Marty Hall

Computer Science Department
University of Maryland Baltimore County

Baltimore, MD 21228-5398 USA

Eisenhower Research Cent er , JHU / AP L
Johns Hopkins Rd.

Laurel, MD 20723 USA

Abstract
Memo functions and memoization are well-known

concepts in A I programming. They have been dis-
cussed since the Sixties and are ofien used as ezamples
in introductory programming texts. However, the au-
tomation of memoization as a practical sofiware en-
gineering tool f o r A I systems has not received a de-
tailed treatment. This paper describes how automatic
memoization can be made viable on a large scale. It
points out advantages and uses of automatic memo-
ization not previously described, identifies the com-
ponents of an automatic memoization facility, enu-
merates potential memoization failures, and presents
a publicly available memoization package (CLAMP)
f o r the Lisp programming language. Experience in ap-
plying these techniques in the development of a large
planning system is briefly discussed.

1 Introduction
Memo functions and memoization are well known

concepts in AI programming. They have been dis-
cussed since the Sixties and are often used as examples
in introductory programming texts [15, 12, 13). The
term “memoization” is derived from the term ‘memo
function,” which was coined by Donald Michie 91. It
refers to the tabulation of the results of a set of c 1 cula-
tions to avoid repeating those calculations. Automatic
memoization refers to a method by which an ordinary
function can be changed mechanically into one that
memoizes or caches its results. We place the decision
about which functions to memoize in the hands of the
user; this contrasts with the approach of Mostow and
Cohen [lo], which tries to automatically infer which
functions should be memoized. These two approaches
to automatic memoization are not incompatible, al-
though as Mostow and Cohen point out, the latter
approach is not a practical tool.

Memoization is particularly apt for AI applications.
Rapid prototyping is a hallmark of AI programming.
Automatic memoization allows the programmer to
write certain functions without regard to efficiency,
while being assured of reasonable performance. By al-
lowing the programmer to avoide these efficiency con-
cerns at the outset, automatic memoization facilitates
the kind of exploratory programming used in the de-
velopment of most AI systems.

The principle of memoization and examples of its
use in areas as varied as lo?; profammi2 v6, 6, 21,
functional programming 41 an natur anguage
parsing [ll] have been described in the literature. In
all of the case^ that we have reviewed, the use of
memoization was either built into in a special purpose
computing engine (e.g., for rule-based deduction, or
CFG parsing), or treated in a cursory way as an ex-
ample rather than taken seriously as a practical tech-
nique. The automation of function memoization as
a practical software engineering technique under hu-
man control has never received a detailed treatment.
In this paper, we report on our experience in develop-
ing CLAMP, a practical automatic memoization pack-
age for Common Lisp, and its use in a large-scale AI
project.

By means of illustration, consider the divided-
difference algorithm dd, which is shown in pseudo-
code in Figure 1. This algorithm is used to deter-
mine coefficients of interpolated polynomials. The al-
gorithm, which is a standard one in numerical meth-
ods, is taken directly from Numerical Mathematics
and Computing [l]. The application itself is not partic-
ularly important; it is the run-time behavior of the al-
gorithm that is of interest to us here. The call tree for
the divided difference algorithm dd forms a network
rather than a tree; thus, a recursive call to dd with par-
ticular arguments may be repeated many times during
a single computation. For example, a call to dd with
low=l and high=lO will generate one recursive call
with low=2 and high=lO and another recursive call
with low=l and h i h=9; each of these will in turn
make a recursive calfwith low=2 and high=9. Mem-
oization of dd causea each calculation to be performed
only once and stored in a table; thereafter, each re-
peated recursive call is replaced by a table lookup of
the appropriate value.

Figure 2 compares the performance of memoized
and unmemoized versions of a Lisp’ implementation
of the divided difference algorithm, using f(n) =
T cos(n) and the first n natural numbers as arguments.
Since a single function call on n points generates two
recursive calls on n - 1 points, the unmemoized ver-

‘Throughout this paper, we use the name Lisp to refer to
the language Common Lisp, as described in Steele [14].

1043-0989/95 $4.00 0 1995 IEEE

. ,

; divided-difference algorithm
dd(points: array,

lov: array-index,
high: array-index,
fn: function)

begin
if low - high then
else return (dd(points, lov+l, high, fn) -
return fn(pointsClov1)

dd(points, loo, high-1, fn)) /
(pointschigh] - pointsClov1)

end

Figure 1: The divided difference algorithm for deter-
mining coefficients of interpolated polynomials can be
elegantly written using recursion and made efficient
through the use of automatic memoization.

n I Unmemoized I Memoized I Memoized I 1
100

I (first run) I (subsequent runs) 1
0.0006
0.0006

0.22 0.0006
0.0007

173 0.4 0.0007
Centuries 25.0 0.002

Figure 2: This table shows the benefits of memoization
on a Lisp implementation of dd. The time complexity
is reduced from e(2") to O(n2) for initial runs and to
near-constant time on subsequent ones.

sion has e(2") time complexity. After memoization,
the first invocation requires O(n2) time, since no sub-
sequence of points is calculated more than once, and
there are (nz + n) / 2 subsequences. Subsequent invo-
cations take near-constant time.

This algorithm for divided difference is typical of a
large class of algorithms which have very elegant re-
cursive definitions which are simply unusable for most
real problems. The conventional response to this sit-
uation is to manually rewrite the algorithm in a dy-
namic programming style. Of course, such manual
rewriting of the code takes effort and involves the risk
of introducing new bugs. An attractive alternative is
to use an automatic memoization package to convert
the elegant but inefficient recursive algorithm into a
useful one. This is attractive, of course, only if such
a package can address the practical problems faced in
real application.

In the next section we describe the some of the as-
pects and uses of automatic memoization not previ-
ously described in the literature. Section three com-

pares the use of automatic memoization to the alterna-
tive of rewriting code by hand. Section four describes
the general components that should be present in any
automatic memoization facility. Section five presents
problems inherent in the use of memoization and the
various ways to address them. Section six describes
our experience in using automatic memoization in in
the development of SMS [17], a decision support sys-
tem that provides submarine crews with situational
awareness and operational advice to reduce detectabil-
ity.

2 Uses of Memoization
There are four main uses of automatic memoiza-

tion. Two of these involve the avoidance of redundant
calculation, first, within a single function invocation,
and second, across invocations. The third use of auto-
matic memoization is as a pre-calculation tool, while
the fourth is as a timing and profiling tool. These are
not conjectured uses but ones which we found to be
effective in many situations in a large, real-world AI
application. We discuss each of these uses in more
detail in the following subsections.

2.1 Repetition within a Function Call
The most common use of memoization is to avoid

the repetition of sub-calculations within a single func-
tion call. In the divided difference example presented
above, there were many repeated recursive calls within
a single function invocation. This type of repetition is
common. For example, a simple recursive backtrack-
ing parser may parse the same constituent many times
during a single parse; thus its performance is poor.
Norvig [ll] has shown that such an algorithm can ob-
tain the performance of chart parsing [7 or of Earley's

2.2 Repetition over Time
In a team programming environment different sec-

tions of a system, written by different programmers,
may access the same function. Alternatively, in an in-
teractive system the user may invoke calculations at
different times that make use of some the same pieces.
In these cases, there is no central routine which could
manage the calling sequence to avoid repetition of the
calculations. The only alternative to automatic mem-
oization in such cases is to have the routine in question
manage its own data structures to cache previous re-
sults.

2.3 Persistence
The preceding subsections showed that memoiza-

tion can eliminate the repeated invocation of expen-
sive calculations. These two applications of memoiza-
tion are useful when it is feasible to perform the first
invocation of a function at run-time. Memoization is
also useful when even the first invocation is too ex-
pensive to perform at run-time.

Use of functions that are too expensive to calcu-
late a t run-time is usually done by building a special
purpose data file, and storing in it the results of an
off-line execution of the expensive routine. Then, the
function in question is modified to access that file.

algorithm [3] through the application o r memoization.

88

Automatic memoization provides a method to pre-
calculate a function without the overhead of a hand-
crafted solution. In such situations automatic mem-
oization eliminates the need for the programmer to
know which ranges of values are stored in the data
file, and which must be calculated. To achieve persis-
tence of an expensive function, the function is mem-
oized and then run off-line on the cases of interest.
The contents of the hash table are then saved to disk.
The saved file is later used to seed the hash table for
the function when it is reloaded.

There are two additional advantages of this type
of memoization beyond providing the ability to pre-
calculate a function. First, it allows the elimination
of functions from the run-time system in cases where
all possible inputs to the memoized function are pre-
calculated. Second, the input values to the memo-
ized function are determined automatically. That is,
the pro rammer does not have to specify the range
of possi%le inputs to the memoized function. In fact,
this solution works even if the programmer has no idea
which input values will be used.

2.4 Timing and Profiling
Finally, automatic memoization can also used as

a profiling and timing tool. Many programming lan-
guage systems provide a profiling facility whereby the
user can see the time that a top-level function spends
in various lower-level routines. This is important for
directing optimization efforts. However, these profilers
generally require significant overhead. For example, a
fully-metered Lisp run on a Symbolics Lisp machine
can take thirty times longer than an unmetered run.
This does not include the time required to load the
metering system. The expense of metering is worth
the effort for important cases, and is a valuable soft-
ware engineering tool. In smaller cases, however, auto-
matic memoization provides a quick but rough method
for determining which routines to optimize. Rather
than running the fully metered system, users interac-
tively memoize certain functions, then repeat the orig-
inal test case twice. If the timing for the second case
improves only by, for example, five percent, then for
that test case, no amount of optimization in the rou-
tines in question will provide more than a five percent
speedup. If on the other hand a great speedup is seen,
then the memoized functions are good candidates for
optimization.

3 Alternatives to Automatic Memoiza-

There are three alternatives to automatic memo-
ization for eliminating repeated calculation: hand-
crafted memoization, dynamic programming, and de-
velopment of a new algorithm. First, memoization
need not be automated. Memoizing a routine by hand
could conceivably result in minor efficiency gains over
automated memoization. Second, in some cases an
ordering can be found for the calculations to be per-
formed such that full memoization is not needed. For
example, in Volume 2 (Seminumerical Algorithms) of
his The Arl of Computer Programming [8], Knuth

t ion

presents a straightforward method for calculating di-
vided differences in the proper order to get the same
performance as the first invocation of the memoized
version presented in the Introduction. Finally, a new
algorithm for a iven task can be sought that does not
require repeatet calculations.

Automatic memoization is not a substitute for find-
ing the proper algorithm for a task. However, when
the major benefit of the development of a new al-
gorithm is a savings in repeated calculations, auto-
matic memoization of an existing algorithm has sev-
eral advantages. These advantages also recommend
automatic memoization over the other approaches de-
scribed above. They fall into three categories: quality
of solution, ease of use, and additional uses of memo-
ization.

3.1 Quality of Solution
Automatic memoization usually leads to short,

clear implementations, because the code to implement
the efficiency improvement does not appear in the
body of the function being improved. F’urthermore,
if the function to be memoized has already been writ-
ten and debugged, the use of automatic memoization
does not risk the introduction of bugs into the function
to the same degree that developing new code for the
task does. This last point is especially important in
the development of large, complex system where there
is a natural reluctance to change routines that have
already been tested and verified, especially if that will
require changes in multiple places in the code. Fur-
thermore, because it is simple to switch back and forth
between the memoized and unmemoized versions, it is
easy to compare the performances of the two versions.

3.2 Ease of Use
In most languages automatic memoization can be

implemented so that it is simple to memoize and un-
memoize functions. None of the alternatives to auto-
matic memoization can boast such a light load on the
programmer. Again, this ease of use depends in part
on avoiding the requirement of writing, debugging and
eventually maintaining new code. This ease of use is
especially important in artificial intelligence applica-
tions, because the design of such applications tends to
change rapidly and frequently.

3.3 Additional Uses
While the alternatives to automatic memoization

mentioned above eliminate repeated calculations, they
do not, in general, provide the other benefits of auto-
matic memoization, i.e. persistence of cached values
and usefulness as a timing and profiling tool. It would
be possible, of course to build in some of these fea-
tures such as a persistent cache mechanism. However,
the automatic memoization approach requires us to do
this only o n c e i n the general memoization facility.

The result of these benefits is that automatic
memoization offers significant practical advantages in
buildin real systems. Hall and Ma eld [5] describe

plied to the development of the SMS system.
some of these advantages in more ;F etail as they ap-

89

(+ 1 (cond ((I n 1) 0)
((evenp n) (Hailstone (/ n 2)))
(t (Hailstone (+ 1 (* 3 n)))))))

Figure 3: The Hailstone function appears to be a
good candidate for memoization, but it is not.

4 Components of an Automatic Mem-
oization Facilitv

I

Based on our experience in developing and using
CLAMP, we have identified characteristics that any
automatic memoization facility should have. Auto-
mated memoization of some sort can be implemented
in most languages. Languages that provide the user
with an interactive run-time environment (such as
Lisp, Dylan and ML) must have either run-time func-
tion name resolution or a patchable code segment to
allow automated memoization. Languages that are
strictly compiled (such as most implementations of C)
must be augmented with some sort of preprocessor to
allow automated memoization.

Three types of control functions make up a useful
memoization package: memoization and unmemoiza-
tion functions, cache control functions, and statistics
reporting functions. We will discuss each in turn.
4.1 Memoization Control

First, the system must provide the user with a va-
riety of methods to easily memoize and unmemoize
functions. These methods should allow both absolute
control over memoization (e.g. memoize a function,
unmemoize a function, unmemoize all functions), and
also, if possible, temporary memoization commands
(e.g. treat a function as memoized while evaluating a
particular expression, treat a function as unmemoized
while evaluating a particular expression).

It is important to allow the programmer to exper-
iment with the effects of memoization in the context
of his or her program. It is not always obvious what
impact memoizing a function will have. For example,
at first glance, the Hailstone function shown in Fig-
ure 3 looks to be a good candidate for memoization,
but experimentation shows no benefits from doing SO.^
4.2 Cache Control

Second, the system must provide methods to con-
trol individual memoization caches, both for a single
session and across sessions. Most important is the
ability to explicitly clear a cache, thereby forcing all
function return values to be re-calculated. Persis-
tence is provided by allowing the user to instruct that
a cache be saved to disk, and in a later session, to
instruct that such a saved cache be read from disk.

*Of come, some careful reasoning will also lead a program-
mer to the same conclusion, but not all programmers will have
the time and experience to do this type of analysis.

Ease of use concerns dictate that these methods be
activated by referring to the name of the memoized
function, and not to the name of a disk file or to some
other internal data structure.
4.3 Data Control

Finally, the memoization package should provide
routines that report statistics collected while a memo-
ized function is running. These statistics should in-
clude the number of times a memoized function is
called, and the number of times that such invocations
result in the return of a cached value. The user should
also be allowed to reset these statistics in preparation
for a new run.

5 Memoization Failures
A major advantage of automatic memoization is its

transparency. However, an overly-transparent view
can lead to problems. While some aspects of these
memoization failures have been discussed in the liter-
ature (notably by Mostow and Cohen [lo]), most have
not. Instead, we learned them the hard way in using
the evolving CLAMP system through the experiences
of AI programmers using the facility over the course
of several years in developing the SMS system.

The most common criticism of automatic memo-
ization that we hear from programmers who have not
used it is that the use of a technique that cannot
guarantee correct results after its application is out
of the question. This complaint is unfounded. As a
counterexample, a technique that is widely-used by
C programmers is function in-lining through macro
expansion. Such macro expansion is not guaranteed
to produce the correct results in all cases. However,
because the programmer controls when macros are ap-
plied, the technique can be used profitably. It is for
this reason that we advocate programmer control over
the selection of functions for memoization. In the fol-
lowing subsections, we describe the potential pitfalls
we have encountered in making decisions about which
functions to memoize.
5.1 Cache Consistency

Memoization is used to avoid recalculation when a
function is invoked with arguments it has seen previ-
ously. Direct changes to the function should result in
the memoization cache being flushed automatically,
as presumably it will then contain incorrect values.
This situation is relatively easy to detect. More diffi-
cult to detect is the alteration of one or more of the
sub-functions that the memoized function calls. There
are several ways to alleviate this problem. The best
method would be for each memoized function to keep
a list of all functions in its call tree, and require that
the cache be flushed when any of those entries is mod-
ified. This could not be done automatically a t run-
time without the use of special data structures in the
unmemoized functions; this capability is unlikely to be
adopted in most programs. In many cases, a proper
use of modularity will indicate how far changes are
likely to propagate. Since the user always has access
to a list of the currently memoized functions, a warn-
ing to check the list whenever changes are made is of-
ten sufficient. This is a trade-off. One of the goals of

90

an automatic memoization facility is to provide tools
that are easy for the programmer to adopt. If using
memoization requires invasive changes to unmemoized
routines, this goal will be compromised.

However this problem is addressed within a single
session, it is usually not a problem across sessions.
Run-time changes to functions usually occur during
development. If caches are not saved to disk, the mem-
oized routines will once again calculate correct values
the next time the system is loaded.

Caches that are saved to disk present a more seri-
ous problem. In some senses, such caches are no differ-
ent from normal data files, and the same problems of
outdated versions apply. No fully automated solution
will guarantee consistency, short of a system builder
that forces recalculation of all saved values whenever
there are changes in any code on which the function
depends. This is not an unreasonable option during
development, since the memoization facility makes it
easy to save entries. Off-line calculations can be per-
formed at regular intervals. However, there is still an
incentive to limit these calculations, since their time-
consuming nature is what led to saving the tables to
disk in the first place.

One way to limit the likelihood of inadvertent use
of obsolete values semi-automatically is to periodically
recalculate memoized values. First, the programmer
specifies a percentage of the entries that are to be re-
calculated on loading the hash table, and/or a percent-
age of times where the memoized function will invoke
the original function even though its arguments have
been seen before. In each case, these recalculated val-
ues are compared to the original ones; a warning is
given if the results are not identical. Load-time recal-
culation may not be possible, of course, since all the
routines needed for a calculation may not be available
when the function is defined. Similarly, run-time re-
calculation may not be desirable, even with a very low
percentage specification, if the system is counting on
a given level of performance. Even if both techniques
are used, they do not guarantee that all obsolete values
will be found. Thus, these techniques should be used
as a complement to other software engineering tech-
niques (such as explicit maintenance of dependencies),
rather than as a replacement for them.
5.2 Non-Functions

Memoization only works for true functions, not pro-
cedures. That is, if a function’s result is not com-
pletely and deterministically specified by its input pa-
rameters, using memoization will give incorrect re-
sults. The number of functions that can be memo-
ized successfully will be increased by encouraging the
use of a functional programming style throughout the
system.
5.3 Modification of Results

Inherent in the idea of memoization is that data is
stored, rather than calculated anew each time a func-
tion is called. Thus, memoized functions can return
results that share structures, even if the unmemoized
version always creates new structures. Even without
memoization, operations that modify function results
are dangerous from a software engineering perspective.

A common problem is that such routines will work fine
when first written, but will make subsequent modifica-
tions difficult. However, in some cases they can lead
to efficiency gains; with care, programmers can use
them to speed up the functions that can really benefit
from their use. Unfortunately, the transparent view of
memoization breaks down when used with such rou-
tines.

For instance, suppose that function Raw-Data re-
turns a newly-created list of numbers. It is called by
the function Normalized-Data, which destructively
removes the maximum and minimum entries from the
list before returning it. Prior to memoization, this
might be perfectly safe. After memoizing Raw-Data,
however, each subsequent retrieval of supposedly iden-
tical data values might in fact receive a shorter list.
Avoiding this problem not only requires the user of
memoization to know how the function to be mem-
oized works, but also how it will be used by other
functions. This is often a difficult task; an easier ap-
proach is to tighten the standards on when modifying
operations are allowed, and to require increased doc-
umentation for those functions that truly need to use
them.

5.4 Compiler Optimization of Recursion
Some compilers will optimize the code they output

by converting tail-recursion to iteration. Such opti-
mization eliminates the recursive function call, but not
the work required to calculate the function’s result.
Since memoization relies on explicit function calls to
activate its table-lookup, such optimization will by-
pass the memoization process. To avoid this prob-
lem, the compiler must be instructed not to eliminate
tail-recursion in memoized routines. Compilers that
do optimize tail-recursion usually provide an appro-
priate compiler directive, for use by the memoization
machinery.

A more subtle optimization is sometimes made by
compilers for languages that resolve function names
at run-time. Such compilers will often bypass the
name resolution process for direct recursion. When
memoization is implemented by binding the memoized
function to the original function name, this once again
results in a circumvention of the memoization table-
lookup. The function will still return correct results,
but the computation savings provided by memoization
will be lost. It is less common for a compiler to give
the user explicit control over this kind of optimization.

Note that this problem can eliminate some, but not
all, of the advantages of memoization. Although the
results of the optimized-away recursive calls will not
be cached, the results of the top-level calls will be
cached. In the terms of the use categories described
in Section 2, the benefits of repetition within a function
call are lost but those due to repetition over tame are
not.

5.5 Recognizing Call Equivalence
Memoization is performed by doing an exact match

on the argument list, using the Lisp function equal by
default. If function Foo is defined as:

(defun Foo (&key (B a r 2) (B a z 3) . . .)

91

and is memoized, all of the following will be treated
as distinct, even though the parameters have identical
values in all cases:

(Foo)
(Foo : B a r 2)
(Foo : B a r 2 : B a z 3)
(Foo :Baz 3)
(Foo : B a z 3 : B a r 2)

Similarly, one can have counterintuitive results
when the arguments are floating point numbers, for-
getting that, for instance, 2 is not equal to 2.0, and
1.234567 is not equal to 1.23456, even though the
function may treat them as identical. The solution
adopted by the SMS program is to introduce “wrap-
per” functions that take keyword arguments, floating
point numbers, etc. , canonicalize the arguments into
some common form, then pass them on to an internal
function that takes only required arguments in the
standard format. It is this internal function that is
then memoized.
5.6 Cache Value Representation

In the current system, the routines that save data to
disk do so by printing the representation of the object
using format, directing the output stream to a file.
This means that Lisp objects whose print representa-
tion cannot be parsed by read cannot be saved to disk.
Some objects such as CLOS instances and structures
allow the definition of a custom print function, and
this can sometimes be used to save them to disk. But
this is not a general mechanism, and special-purpose
code will need to be written in those cases.

6 Experience and Evaluation
The Signature Management System (SMS) is a de-

cision aid for submarine crews that provides situa-
tional awareness and operational advice to help the
ship reduce its overall detectability. It has been devel-
oped over the last five years under ARPA funding at
the Johns Hopkins University Applied Physics Labo-
ratory (JHU/APL). Outside of APL, team members
have come primarily from industry, with eight corpo-
rations and two universities on the development team.
The system combines a variety of representations in-
cluding frames/objects, production rules, mathemati-
cal models, and procedural code. About 75% is writ-
ten in Common Lisp, with the remainder in C; it runs
on UNIX platforms.

The automatic memoization system was used in the
SMS program by at leastl;ix Lisp developers from
three different companies. Permanent” memoization
(i . e . uses other than profiling) remains in the released
system in 25 places. However, use as a first-cut pro-
filing tool was one of the most common uses of memo-
ization. All four uses described in Section 2 were used
extensively by multiple programmers.
6.1 SMS Magnetics Module

Figure 4 gives timing statistics for a magnetics
module used in the Signature Management System,
timed after various uses of memoization were put into
effect. Ignoring the benefits when the user asks for
the same display at different times (which is in fact
quite common), Figure 4 gives a summary of the time

aspect

+ conventional optimization
unmemoized original

Time (sec) Speedup
48 1.0
36 1.33

I +repetitions over time I 24 I 2.0 I
+ dynamic programming 1 2 I 24.0
+ saved memoization tables I 0.001 I 48,000

Figure 4: These figures show the cumulative effects of
the different aspects of automatic memoization on a
magnetics module used in the Signature Management
System.

benefits of memoization on the first time invocation
of the top-level display. Times are in seconds, and
are conservative approximations. Similar results were
obtained with other modules.
6.2 SMS Detectability Planning Display

Given the diverse uses of memoization by various
programmers on the SMS program, we attempted to
estimate the overall contribution of memoization to
the system. For instance, one of the displays used as
an aid to planning submarine operations in the SMS
system shows the predicted probability of detection
of the submarine for various choices of heading and
speed, drawn on a polar plot with the angle (theta) in-
dicating heading (0 corresponding to due north), and
the radius (r) corresponding to speed. Each (r,theta)
pair (arc) in the display is coded with a color indicat-
ing the cumulative probability of detection for the sub
if it were to operate at the indicated course and speed.

This display is used as a high-level tool in plan-
ning, and thus includes highly summarized informa-
tion. It presents a single number for probability of
detection which is a composite of all the potential de-
tection methods or signatures. The user frequently is
interested in the contribution of individual signature
components to this composite. Since the probability
of detection of each component is memoized before it
is combined into the composite, any component cor-
responding to a point on the display can be retrieved
almost instantly. Taking advantage of this, the dis-
play of can be maintained with virtually no additional
computation.

Whenever the user moves the mouse over the com-
posite detectability display, the corresponding speed
and course for the point under the mouse is calculated.
Then, the individual components are calculated, with
their relative values shown in the bar charts. Due to
the effects of memoization, the component values can
be calculated and graphed as quickly as the user can
move the mouse.

The system was run from this display in the default
mode and then with all memoization turned off. The
results, given in Figure 5 show a 631x improvement
in speed, and a 4 , 8 2 2 ~ improvement in the amount of
temporary memory (garbage) allocated. Benchmarks
are notoriously misleading, and in many places the
code would have been written dramatically differently
if memoization had not been available. Nevertheless,

92

- version time bytes consed
unmemoized 2562.74 sec. 2,969,392,724

memoized 4.06 sec. 615.784

Figure 5: Dramatic improvements in execution time
and consing were obtained in the overall SMS system.

the results are illuminatin especially since they rep-
resent improvements over tke original baseline system.
Because the computation of this summary display rep-
resents the final, high-level computation of the entire
system it is a reasonable way to measure the contri-
bution of the use of automatic memoization.

7 Conclusions
Automatic memoization is a powerful tool that al-

lows many simple but inefficient algorithms to be
made useful in practice. Beyond this basic advan-
tage though, automatic memoization provides other
significant advantages to the artificial intelligence pro-
grammer. These advanta es include the ability to add
persistence to a memoizet function, and the ability to
perform timing and profiling studies rapidly. These
advantages far outweigh the potential pitfalls of au-
tomatic memoization in artificial intelligence applica-
tions, because of the prevalence of a rapid prototyping
approach in such projects.

Source code for the CLAMP system is available via
anonymous FTP (ftp: /ftp.cs.umbc.edu or by email

available on the Internet Lisp archives at CMU, and
is part of the CMU AI CD-ROM.

via a request to (hall d cs.umbc.edu). C 2 AMP is also

Acknowledgements. This work was supported in
part by the Advanced Research Projects Agency under
JHU/APL subcontract 605089-L. The authors thank
V.J. Benokraitis AA1 Corporation), Lien T. Duong
(AA1 Corporation!, J. Paul McNamee (AA1 Corpora-
tion), Peter Norvig (Sun Microsystems), and David J.
Scheerer (The Johns Hopkins Applied Physics Labo-
ratory) for their helpful comments, both on the LISP
implementation and on earlier versions of this paper.
Thanks to John Aspinall (Symbolics) for suggesting
the use of the divided--dif f erence example.

References
[l] Ward Cheney and David Kincaid. Numerical

Mathematics and Computing. Brooks/Cole, 1980.

[2] S.W. Dietrich. Extension tables: Memo relations
in logic programming. In Fourth International
Symposium on Logic Programming, pages 264-
273, 1987.

[3] J. Earley. An efficient context-free parsing algo-
rithm. Communications of the Association for
Computing Machinery, 6(2):451-455, 1970.

[4] Anthony J. Field and Peter G. Harrison. Func-
trona1 Programming. Addison-Wesley, 1988.

[5] Marty Hall and James Mayfield. Improving the
performance of AI software: Payoffs and pit-
falls in win automatic memoization. In Pro-
ceedings of t f e Sizth International Symposium on
Artificial Intelligence, pages 178-184. Megabyte,
September 1993.

[6] B. Hoffmann. Term rewriting with sharing and
memoization. In H. Kirchner and G. Levi, editors,
Algebraic and Logic Programming: Proc. of the
Third International Conference, pages 128-142.
Springer, Berlin, Heidelberg, 1992.

[7] M. Kay. Algorithm schemata and data structures
in syntactic processing. In Proceedings of the
Symposium on Tezt Processing. Nobel Academy,
1980.

[SI Donald E. Knuth. The Art of Computer Progmm-
ming, volume 2. Addison-Wesley, 1969.

[9] Donald Michie. “memo” functions and machine
learning. Nature, 218(1):19-22, April 1968.

[lo] Jack Mostow and Donald Cohen. Automating
program speedup by deciding what to cache. In
Proceedings of the Ninth International Joint Con-
ference on Ariificial Intelligence, pages 165-172.
Morgan Kaufmann Publishers, Inc., 1985.

[ll] Peter Norvig. Techniques for automatic memo-
ization with applications to context-free parsing.
Computational Linguistics, 17(1):91-98, 1991.

Paradigms of A I Programming:
Case Studies in Common LISP. Morgan Kauf-
mann, 1992.

[13] F. C. N. Pereira and S. M. Shieber. Prolog and
NaturaLLanguage Analysis. csli, Stanford, CA,
1987.

[14] Guy L. Jr. Steele. Common Lisp: The Language.
Digital Press, second edition, 1990.

[15] Gerry Sussman and Hal Abelson. The Structure
and Interpretation of Computer Programs. MIT
Press, 1983.

Memoing for logic pro-
grams. Communications of the ACM, 35(3):93-
111,1992.

[17] David Wenstrand, H. Lee Dantzler, Marty Hall,
David Scheerer, Charles Sinex, and David Zaret.’
A multiple knowledge base approach to subma-
rine stealth monitoring and planning. In Proceed-
ings of the DARPA Associate Technology Sympo-
sium, June 1991.

[12] Peter Norvig.

[16] David S. Warren.

93

. . .~ , . . ~ .. .,..

http://ftp.cs.umbc.edu

