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Abstract—As of 2016, there are more mobile devices than
humans on earth. Today, mobile devices are a critical part of our
lives and often hold sensitive corporate and personal data. As a
result, they are a lucrative target for attackers, and managing
data privacy and security on mobile devices has become a vital
issue. Existing access control mechanisms in most devices are
restrictive and inadequate. They do not take into account the
context of a device and its user when making decisions. In many
cases, the access granted to a subject should change based on
context of a device. Such fine-grained, context-sensitive access
control policies have to be personalized too. In this paper, we
present the MITHRIL system, that uses policies represented in
Semantic Web technologies and captured using user feedback, to
handle access control on mobile devices. We present an iterative
feedback process to capture user specific policy. We also present a
policy violation metric that allows us to decide when the capture
process is complete.

I. INTRODUCTION

Mobile devices are a ubiquitous commodity. Both An-
droid [1] and Apple [2] ecosystems claim to have more
than a billion active devices today. However, unlike iOS,
Android is open source. This allows both black hat hackers
(who violate computer security for personal gain) as well as
white hat hackers (ethical hackers), ample opportunity to study
strengths and weaknesses of the system. Due to advantages of
being open-sourced, we use Android as our primary research
prototyping platform.

As of February 2016, Statista [3] estimated number of
apps in Google Play Store at two million. Android apps are
also available through other outlets like Amazon App Store
and Samsung Galaxy Apps [4]. As the number of Internet-
connected mobile users and number of apps and app-stores
increase, not only are mobile devices and apps used more
often, they also carry confidential data thus making them a
potential target for attacks. A 2014 McAfee Labs report [5]
predicted that mobile technologies would see an escalation
of attacks, due to openly available mobile malicious source
code. Malware are not the only threats faced by mobile users.
A Google taxonomy provides us with additional threats that
users face through Potentially Harmful Apps (PHA) [6], such
as Billing Frauds, Spyware, Hostile Downloaders, Privilege
Escalators, Ransomware, Rooting apps.

At a personal level, mobile devices offer a lucrative target
to developers with malicious intent, due to their usage in
e-commerce as a payment device at a point of sale (e.g.,
Google Wallet, Apple Pay). Also because they serve as

a potential second factor authentication device and contain
highly personal data like emails, messages and sensor data.
At a corporate user level, the rise in adoption of Bring-Your-
Own-Device (BYOD) principle, into organizational policy,
allow employees’ personal devices to be used both within
and outside of corporate firewalls. Such devices at times
store confidential industrial data thus creating an incentive for
developers with malicious intent.

The BYOD scenario motivates a key challenge in access
control for mobile devices. Depending on user context, access
rights can change. For instance, it might be permissible to
send some data over the corporate VPN, but not have it
uploaded to Facebook. It might be OK to use camera generally,
but not inside the company facility. Reporting GPS locations
to a platform provider (e.g., Google, Apple) might be fine
in general, but not when inside a sensitive compartmented
information facility (SCIF). The current “permit once” model
followed by most mobile OSs are inadequate for handling such
context-dependent access control tasks.

In light of such potential problems, we submit that there
is a need for fine-grained, dynamic and context-driven access
control policies to protect the privacy and security of a user
and her data. Although significant work in access control has
been carried out by the research community [7], [8], [9],
the state-of-the-art has stopped at generalizing access control
policies to grouped policy profiles. Consequently, we present
MITHRIL1 access control system. Three key contributions of
MITHRIL includes policy representation, user-preferred and
specific policy capture and policy enforcement. We use a
working prototype built for Android, that allows us to capture
a policy P’ that denotes a user-preferred and specific, context-
sensitive policy, starting from a policy P that denotes an initial
generic policy, applicable to a user’s profile category.

We use Semantic Web technologies like the Semantic Web
Rule Language [10] (SWRL), to represent our access control
policy rules. We use the Platys ontology [11] written using
the Web Ontology Language (OWL) [12], to model user
context. MITHRIL combines information about users’ context,
requested information and requester info as antecedents in
policy rules that allows us to express complex rule conditions.
Our policy makes a closed world assumption for access

1MITHRIL is a reference to a precious, lightweight and extremely strong
silvery metal from the Lord of the Rings which protected its wearer, Frodo,
from life threatening dangers: http://lotr.wikia.com/wiki/Mithril
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control, in order to reduce the complexity of the system.
As in, when the context, requested information and requester
combination does not match an appropriate policy rule we fall
back to a deny by default access control mechanism.

For MITHRIL we have a user policy control module that
uses a Violation Metric (hereafter denoted as VM metric),
to determine state of the policy capture system. Using the
metric allows us to determine, if we are closer to a stable and
personalized user access control policy or not. The VM metric
also allows us to determine transitional state for MITHRIL. We
use an iterative model for capturing users’ preferred policy
that is guided by a hierarchical context ontology for location,
activity generalizations. We begin the process by using an
initial policy and observe all violations of said policy that
happens on the mobile device. We use a periodic user feedback
process that allows us to evolve from an initial user policy to
a specific user policy. Finally, we use a policy enforcement
module that intercepts any data request made by an app and
manages access control decisions.

The main contribution of our work is the design and
development of the MITHRIL system, which has the following
features:

• An access-control policy representation technique using
an ontology to model high-level semantic context on a
mobile device.

• A framework for policy capture and using our VM metric
to determine transitional state for MITHRIL.

• Access control decision handling and policy enforcement.
The rest of the paper is organized as follows. We start with

a discussion of the related work in Section II. Following that
we present our system’s overview, define relevant terminology
and present our assumptions in Section III. We present our use
case scenarios in Section IV. Section V provides the details
of our iterative process for capturing user-specific policy on
a mobile device and discusses a possible way to generate
more policies. We present our evaluation methodology and a
discussion on our experimental results Section VI. Finally, we
conclude the paper with a summary and discussion on possible
future directions for the work in Section VII.

II. RELATED WORK

Access control research has broadly focused on policy
representation and policy execution [13], [14], [9] with work
done both by the open source and research communities. Some
prominent examples of open source solutions include XPrivacy
(which needs a rooted phone), Privacy Guard (available on
CyanogenMod, a custom Android ROM) and the PDroid
application (which requires a rooted device). However, none
of these systems can take into account user context for their
policies. As explained earlier, this is a critical requirement for
a mobile user today and our system uses such context driven
policies. Access control examples from research community
include work done by Conti et. al. [7] (CRePE), Enck et
al. [8] (TaintDroid) and Jagtap et al. [11] (Preserving Privacy
in Context-Aware Systems). CRePE was one of the earliest
systems that described security policy enforcement based

on the context of a mobile phone. Our system extends the
approach taken in CRePE by introducing a more expressive
context model and using inference to compare a user’s current
context to a context description in a policy.

TaintDroid was another research effort where data flow
on an Android device was studied to determine when sen-
sitive data left the system via an untrusted application. Taint-
Droid studied some contextual feature for determining privacy
breaches but that included context of an app itself, i.e. “if
it is accessing location, is this app a location provider?”.
The user context is a significant driver for privacy needs and
was ignored by TaintDroid. Such a solution was proposed by
our group in past work done by Jagtap et al. and Ghosh et.
al. [11], [15]. The focus of these works was constraining data
flow based on user context. They used predefined policies,
which could be obtained from system admins or industry
experts. However, there is also a need to allow individual
users to modify, extend and create policy rules to match
their needs and preferences. MITHRIL helps users do that
by identifying potential faults in current policy and capturing
policy modifications.

The state-of-the-art in research on policy capture stops
at determining generalized privacy profiles [16], [17], [18],
[19]. These works conclude that it was possible to create
privacy “profiles” applicable to user categories on mobile
devices with reasonable accuracy. When it comes to defining
their own rules, it was observed by [17] that users were not
good judges of how well a rule meets their true needs or
preferences. However, in their other work they showed that
with enough “privacy nudges”, explaining how their location
was being shared, users could be guided into modifying their
preference. We argue that given a set of policy violations and a
hierarchical context model, users would be able to define their
preferred policy. We focus on using context generalization and
specialization with assistance from our Platys ontology [11]
driven context model, and combining that with user feedback
to reach an individual user’s preferred specific policy.

III. SYSTEM OVERVIEW

The system architecture of MITHRIL is shown in Figure 1.
MITHRIL contains four main components: a policy enforce-
ment module, a policy decision module, a policy store module
and a user policy control module. MITHRIL sits between
application layer and framework layer. It takes as input a
request for data or component access. It’s output contains
requested data or access to a component or an exception
stating that data or component is unavailable. To represent
access constraints, MITHRIL uses an attribute-based access
control (ABAC) model [20], where the attributes represent user
context, requested resource and requester meta-data. We use
ABAC as it provides us the flexibility of having any number
of attributes to be added to our rule.

MITHRIL has two operating modes: OBSERVER and EN-
FORCER. In observer mode the system does not enforce access
control policies, but simply notes all violations of current
policy rules. In this mode, feedback requested from user
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Fig. 1. Mithril sits between apps and Android framework and comprises four
main modules: policy enforcement, policy decision, policy store and policy
control

periodically, on the recorded violations, in order to capture
their ‘preferred policy’. The frequency for feedback is a system
setting that is adjustable by user or system admin. After an
initial round of policy capture and user interaction MITHRIL
moves to ENFORCER mode, in which it enforces current
applicable policy rules. The transition between the two modes
is determined using a predefined, but adjustable, threshold for
the VM metric.

A. Relevant Term Definitions

Following are some terms and definitions that we use in this
paper.

Definition 1: CONTEXT has been defined by Dey and
Abowd [21] as: “[...] any information that can be used to
characterize the situation of an entity (i.e., identity, location,
activity, time). An entity is a person, place, or object that
is considered relevant to the interaction between a user and
application, including the user and applications themselves.”

We have used above-mentioned definition of context and
extended it further in our previous work [15] to generalize or
specialize location and activity context.

Definition 2: A POLICY, consists of a set of RULES (also
referred to as POLICY RULES in this paper), that define access
control for data. A policy is applicable for a USER-CATEGORY
or specific user.

Definition 3: A RULE, also called policy rule in our sys-
tem, is a Semantic Web Rule Language (SWRL) [10] rule
represented as antecedent ⇒ consequent.

MITHRIL uses context-sensitive privacy policy rules defined
in the Semantic Web Rule Language (SWRL) [10] to handle
access control on mobile devices. Sharma et.al. [22] created
a showed how to represent security rules using OWL and the
ABAC model. SWRL was a proposal for a rule extension for
OWL (W3C member submission) [10] and therefore we use
it for our access control policy representation. The abstract
syntax for SWRL rules follow the Extended Backus-Naur
Form (EBNF) notation which, while are useful for XML and

RDF serializations. Antecedent(s) must hold for a consequent
to apply. Multiple antecedents in a rule are defined as a
conjunctions of atoms. The consequent atom states whether
the access is allowed or denied.

Definition 4: A policy rule VIOLATION, is recorded when
antecedent(s) of a rule and a consequent defines a certain
behavior for an app and an access pattern that contradicts this
behavior is observed.

Assuming our rule is “Do not share camera resource with
social media applications at work”. A violation is recorded
if for some reason the camera is accessed by a social media
app at work. During the feedback cycle this violation will
be marked as a TRUE violation (hereafter denoted as TV), if
the user agrees that this behavior is indeed unexpected. For
example, if the camera was accessed by Instagram, a social
media app, when at work and the user did not expect this
observed behavior, then we have a true violation captured.
A violation is considered to be a FALSE violation (hereafter
denotes as FV), if the user expected observed behavior. For
example, the camera might have been accessed at work by
Instagram, but the user initiated it while at lunch in the
cafeteria. Using the TV and FV frequencies we compute our
Violation Metric (VM). Our VM metric, computed as follows,
helps us determine if MITHRIL is ready to transition from
OBSERVER mode to ENFORCER mode:

VM =
TV

FV + TV

This VM metric computes the “Precision” of our policy
capture system, as in the ratio of true positives and sum
of true and false positives. Our true violations are the “true
positives”, which signifies that the default policy P and the
user’s preferred policy P’ were the same and NO modifications
to the original policy will be required. On the other hand false
violations or “false positives” are situations when the default
policy P and the user’s preferred policy P’ differ and we need
to capture change in current policy. A high value of the VM
metric signifies we are closer to a user’s “personalized” policy.

B. Assumptions

Throughout this paper, we use a running example to explain
the working behavior of our system. The example is simply
used for clarity purposes and our working prototype is not
limited to this example. Our example uses a policy applicable
to users in a “graduate student” category. We also assume
that our users work for confidential research and therefore
protecting their personal and professional data is of critical
importance. We assume that they start from an initial policy P,
that they are allowed to modify to better protect their own data.
We use Android mobile devices for our system implementation
as Android is open source and thus we can modify the system
behavior with respect to policy implementation or policy
violation detection. A system grounded in an OWL ontology
and that uses an OWL-DL reasoner has some limitations.
OWL-DL, for example, doesn’t allow us to draw conclusions
based on our not knowing some fact. This means that once



resourceRequested (?r, Camera) ∧
requestingApp (?app) ∧
hasAppType (?app, SocialMedia) ∧
User (?u) ∧
userLocation (?u, ?l) ∧
hasLocationType (?l, UniversityLab)
→
AccessLevel (Deny)

Fig. 2. Simple rule for controlling social media camera access

we have deleted a rule as presented in the next section, we
will not be able to infer the decision for said rule. However,
our system uses a closed world assumption and defaults to a
default deny policy when a policy decision cannot be made
about a certain request. One final assumption for our prototype
was that we do not focus on context extraction from sensors,
rather our high-level semantic context is already available to
the system.

C. Policy Store

The policy store module in MITHRIL has a knowledge base
containing the currently applicable policy for the user-category
of the mobile device’s user. The user chooses an applicable
user-category, when the system starts for the first time and
the initial policy for said user category is then downloaded
on the mobile device. Research conducted by [16], [17], [18],
[19] have established that it is possible to fairly accurately
create privacy profiles applicable to user categories on mobile
devices. We use such a predefined initial policy, driven by user
category classification defined in our ontology, as a starting
point for our system.

The storage module takes as input a requester app’s in-
formation and information about the requested resource and
searches the policy knowledge base for the applicable policy
rules and returns the same to the policy decision module. The
second task that the policy storage handles is updating a policy
rule as requested by the user policy control module. Now, let
us take a look at how rules are represented in MITHRIL.

Rule Representation: Rules, in our system, are expressed
using SWRL. A more abstract representation may be consid-
ered as a triple (U, C, Q) which contains: U, that represents
user’s context, that is the user whose data is represented in
the system. C is requester metadata, that is the app which is
requesting component access or user data. Q represents the
data request in form of a query. The consequent of a rule
defines the action to be taken. We define some use cases
in detail in the following section but for now we present an
example rule where, we have an app that belongs to the social
media category. Let us take a look at a rule from our policy
called GRADSTUDENTPOLICY for graduate students, called
SOCIALMEDIACAMERAACCESSRULE. The rule states that,
while the student is in a university building, social media apps
are not allowed to access camera on her mobile device. The
rule is shown Figure 2.

resourceRequested (?r, Camera) ∧
requestingApp (?app) ∧
hasAppType (?app, SocialMedia) ∧
User (?u) ∧
userT ime (?u, ?t) ∧
timeAfter (?t, 0900) ∧
timeBefore (?t, 1700) ∧
userDayOfWeek (?u, ?d) ∧
hasDayType (?d,weekday) ∧
userActivity (?a) ∧
hasActivityType (?a,Advisor Meeting) ∧
userpresenceInfo (?p) ∧
hasPresenceType (?p,Advisor) ∧
userLocation (?u, ?l) ∧
hasLocationType (?l, UniversityLab)
→
AccessLevel (Deny)

Fig. 3. Rule with higher granularity, for controlling social media camera
access

Example of a higher granularity rule can be seen in Figure 3,
which has more conditions incorporated. In plain terms we are
now stating that instead of just being applicable in a university
building, we “Do not allow camera access to “Social Media”
apps when the time of day is between 9AM and 5PM and
it is a weekday and the user is at university lab location in
presence of her Advisor and has a meeting scheduled with her
Advisor”.

D. Policy Decision

The policy decision module receives as input, a request
meta-data from policy enforcement module. The current con-
text is obtained using a context synthesizer sub-module. The
context synthesizer keeps user context facts updated using an
OWL-DL reasoner and a context ontology to infer high-level
and semantically rich context. A similar technique for context
inference from low level sensor information was explored
in [23]. We use the Platys ontology [11] to semantically
represent user context. We use classes defined in the Platys
ontology to define hierarchical context models that enables us
to generalize or specialize over user context. An example of
how this is used is shown in section V.

We use a knowledge-base on the phone that stores facts
about apps including app categories. The facts are extracted
from various sources like the Android Marketplace [24] and
the DBpedia ontology [25]. The facts include meta-data like
app manufacturer, download count, maturity rating, user rating,
developer country of origin, number and category of permis-
sions requested by the app etc. The facts about user context and
apps are stored in form of RDF triples, which helps us query
the knowledge-base for properties like app types or location
types. These information enables the inference mechanism as
the rules are stated in terms of the properties of apps and user
context.



The final piece of information needed to make a decision are
the rules for the current request meta-data, which are provided
by the policy storage module. A requester, resource tuple
can have multiple policy rules applicable based on contextual
conditions. Once rules are obtained, using context and app
facts from knowledge-base a specific rule applicable is inferred
by an OWL-DL reasoner. The consequent of a chosen rule is
the applicable action. If action is deny then a data request is
marked as a possible violation of current policy rules.

In observer mode, the violation meta-data, which consists
of a request meta-data along-with an applicable rule and user
context is forwarded to User Policy Control module and no
response is sent to policy enforcement module. In enforcer
mode however, action inferred by reasoner is simply returned
to policy enforcement module to manage access to requested
resource.

E. Policy Enforcement

For policy enforcement, MITHRIL has to be the system
admin. We achieve the goal of inserting ourselves in between
applications and Android framework and acting as an admin
by using a custom ROM. Our solution is similar to some
seen in the open source world like the XPrivacy [26] solution
which is an XPosed [27] module. Android has a process
called Zygote which is similar to the Linux init process. Just
like in Linux every application starts as fork of Zygote. This
process is started by an /init.rc script when the phone is
booted. Zygote is started with /system/bin/app process, which
loads all required classes and invokes initialization methods.
Upon installation, XPosed copies an extended app process
executable to /system/bin. This adds an additional jar to the
classpath and calls methods and inside that method, XPosed
can act in Zygote’s context. An XPosed module can thus act
as the initiating process for every application and thus is able
to control its behavior. Our access control implementation for
MITHRIL emulates the behavior of XPosed and is installed
on a phone with a custom ROM CM13 [28] which is a
fork of Android 6.0.1 (Marshmallow). Our app acts with root
privileges, which is required for controlling other apps.

The policy enforcement module receives as input, data
requests from apps and serves them with data as dictated by
the “action” returned by policy decision module. In observer
mode, policy enforcement module does enforce access control
on the mobile device. In this mode it simply passes data
request tuples consisting of a requested component name or
type of data and a requester name (henceforth referred to
as: request meta-data) to policy decision module. In enforcer
mode, it passes on a request meta-data but expects policy
decision module to provide an “action”. If the action is to allow
access, it simply makes a request to the Android framework
for the data and returns the same to the requesting app. If
action is to deny access, it prohibits request from going any
further.

F. User Policy Control

Finally, we take a look at the user policy control module.
This module is of key importance in this paper and will
be discussed in detail in Section V but we provide a brief
overview here. As we have explained before, MITHRIL starts
with an initial policy for a particular user category as defined
by the occupation chosen by the user at installation time
for MITHRIL. We collect user’s identity and some basic
profile information. This information includes user’s identity,
work location, home location, occupation category defined
by our ontology etc. Using the policy control module we
capture a user’s preferred policy. We use an ontology to define
contextual information using a hierarchical context model. We
use Location and Activity generalization as was shown in our
group’s previous work [29] and discussed in Section V.

IV. USE CASE SCENARIOS

The use cases that we will discuss represent the possible
scenarios we envision in our policy violation and user feedback
process. We used CM13, a fork of Android 6.0.1 (Marshmal-
low) for creating the application that allows us to capture user
feedback. Before Android Marshmallow, we had a permission
model of install-time permission acquisition for data access
allowed to an app. In Marshmallow we saw the launch of run-
time permission acquisition model. Point to note here is that
we now have Android 7.0.1 (Nougat) out in the wild but from
an access control model perspective, nothing has changed, so
using CM13 is okay for now. However, we still do not have
context-sensitive, fine-grained and dynamic access control in
Android. In our running example, we have an initial policy for
graduate students, i.e., GRADSTUDENTPOLICY that contains
a few rules like the following:

• SOCIALMEDIACAMERAACCESSRULE: Do not share
camera resource with social media applications at work

• SOCIALMEDIALOCATIONACCESSRULE: Do not share
location with social media applications at work

• TOOLAPPSNETWORKACCESSRULE: Do not share net-
work information with Tool apps

• PRODCUTIVTYAPPSIDENTITYACCESSRULE: Do not
share identity with productivity apps

In our example scenario we will use the SOCIALMEDIACAM-
ERAACCESSRULE for explanations. We are assuming that
the user is a graduate student at UMBC’s Computer Science
department. In the OBSERVER mode, we mentioned earlier,
MITHRIL captures violations of the current applicable policy.
Now imagine that the user takes a picture at the university
cafeteria during lunch hours and uploads to Instagram. Our
system is able to use the Platys ontology to determine that
university cafeteria is “part of” the university and therefore
the user is at ‘Work’. Using our app knowledge-base we are
also able to determine that Instagram is a Social Media app.
Since we have a rule that states that social media applications
are not allowed location access at ‘Work’, we detect this as a
violation of applicable policy. In the next user feedback cycle
we present all such “violations” of the initial policy to the



Fig. 4. Transitions shown for prototype app

user. At this juncture we study the five use case scenarios that
can happen in our system.

A. Use case - True Violations:

“Rule is good, keep it”. User is presented with a violation
and the user determines that this was a TRUE violation. As
stated before, this type of violation signifies that user did not
expect observed behavior and the policy requires no change. In
this case, the response we capture is used as a confirmation of
the rule as being true. We will not ask the user about this rule
again unless some sort of system wide reset happens. In this
scenario we will enforce this rule as-is in ENFORCER mode.
This use case signifies MITHRIL will now make “Do not share
camera resource with social media applications at work” a
quasi-permanent policy. By quasi-permanent we mean that the
policy is not going to change unless there is an explicit system
reset performed to go back to the initial policy applicable to
the user category. This could happen if some static user profile
information is changed that was collected at the install time.

B. Use case - False Violations:

The rest of the use cases state situations when policy
modifications are required but we still have some variations in
how modifications are carried out. The rest of the use cases
explain these situations.

USE CASE FV-1: “Rule is not required, delete it”. User is
presented with a violation and the user determines that this was
a FALSE violation requiring deletion. This scenario indicates
that the user expected this behavior and thus the policy rule
that causes current observation to be determined as a violation
is no longer applicable. Similar to the above use case we will
not ask the user about this rule again unless some sort of

system wide reset happens to the original default policy. In
this scenario we will delete this particular rule and not enforce
it in ENFORCER mode.

USE CASE FV-2: “Rule requires antecedent generalization,
modify it”. User is presented with a violation and the user
determines the policy rule to be FALSE violation but an
imprecise rule. That is the observed behavior although might
not have been unexpected but the current rule does not
clearly define the user’s preferred policy. As a result, observed
behavior cannot be clearly stated as a violation of user’s policy.
An example of such a scenario would be, our rule stated was
“Do not share camera resource with social media applications
at work”. Observed behavior was Instagram, a social media
app, was used at University Cafeteria. The cafeteria is inferred
as a work location as it is part of the University. However, the
user expects to use their mobile to take pictures during lunch.
Therefore, the rule requires more conditions like a temporal
restriction or a more precise location restriction or an activity
restriction. Such restrictions would mean modification would
be required for the rule antecedents or new antecedents would
have to be added to the rule. As such, at this point we can have
four different outcomes. Since the user determines the rule as
imprecise, they are allowed to modify the rule. Modifications
could include changing a specific contextual antecedent into
a more generic contextual antecedent. See the app design
diagram in Figure 7. Our example rule stated that “Do not
share camera resource with social media applications at work”.
The ‘at work’ part of the rule for a graduate student profile
is used to infer that a location related antecedent applies and
University Campus is a ‘work’ location. Now, user may choose
to make location antecedent into a more generic antecedent by
going up the relationship chain defined in our ontology. An
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Fig. 5. Rule violation meta-data displayed to user

example of such generalization would be that user wants to
apply the camera restriction at city level. New generic rule now
applies as “Do not share camera resource with social media
applications in Baltimore county”.

USE CASE FV-3: “Rule requires antecedent specialization,
modify it”. User could also choose to make the rule more
specific. For example they could state that the rule applies
only at the ‘University Lab’. The reasoner will be able to infer
that a modified rule needs to be enforced at a more specific
location than previously captured. In pretty much the same
way as the above use case, user is allowed to choose a more
specific location antecedent by parsing down the relationship
chain in our ontology. The modified policy thus becomes “Do
not share camera resource with social media applications at
University Lab”.

USE CASE FV-4: “Rule has too many or is missing condi-
tions, delete or add them”. The most interesting use case is
that of adding or deleting antecedents to the rule. As we saw
in Figure 3. We could have a situation where the rule only
applies if it is official work hours or in presence of certain
other people. In such a scenario, our system allows the user
to add or even remove contextual and other antecedents to the
rule. Thus allowing us to capture more fine-grained policies
than previously possible. Our example policy for social media

camera resource access thus becomes “Do not share camera
resource with social media applications at University Lab
between 9AM and 5PM on a weekday in presence of Advisor”.
Such a rule can be captured by user feedback process only,
thus justifying the need for our system.

USE CASE FV-5: “New rule is required”. An extension
of the above use case would be that user needs a new rule
altogether. This option is also available to user through our
system. The user may simply choose to start an empty rule
and add new antecedents and state a consequent that captures
some aspect of the user’s policy that was not covered by the
initial policy. This flexibility allows our system to be capable
of defining policies with all possible combinations of our
system’s known antecedents. As a result, with proper feedback
we will always be able to reach the user’s preferred policy.

V. SYSTEM IMPLEMENTATION

Since MITHRIL uses a feedback mechanism to iteratively
modify policy rules, we need to take a look at the rule capture
interface and process. We have implemented a prototype
system that has four modules. The first module detects app
launch and API call behavior. This is to determine when an
app, for example, requests location update. The second module
gathers contextual information. The third module intercepts
the calls made by an app and either returns dummy responses
or no response at all. Since Android Marshmallow no data
return is an acceptable behavior and we take advantage of this
feature. Thus achieving data privacy and security with low
system instability.

The user policy control is the final part of our system
implementation. Figure 5 shows the violation meta-data as
seen by the user and Figure 7 shows the policy modification
options that a user is provided during the process of capturing
their preferred policy. We have also added a set of screenshots
from our prototype app showing the steps of rule capture (see
Figure 4). A feedback iteration starts with a list of violations,
obtained from policy decision module, being presented to a
user. When the user chooses to look at a specific rule violation
from a list they are presented with a specific rule’s violation
meta-data, which includes actual rule statement and a list of
facts about an app that is violating a rule. User then has
the option of further exploring the violation by clicking on
“Display Policy Rule Conditions” button for exploring context
antecedents for said rule.

The frequency of feedback is a admin or user setting. During
each feedback iteration, the user is shown a list of all potential
violations on their mobile device. As explained in previous
section, user has two options at this point. They can choose
to state a violation as a true violation or as a false violation.
Our ontology and user context facts allows us to generalize or
specialize over user’s context. This provides a convenient way
for user to modify policy conditions, in order to define changes
in the current rules. We use two types of generalization: by
location and by activity.

Location generalization in our ontology is achieved by using
the transitive properties “is’́ and “part of”. We define in our



Fig. 6. Snapshot of Platys Ontology defining context hierarchy

ontology every place in the world as a sub class of the
Location class. Thus we have sub classes Country, State, City,
Organization, Building, Room, Point. Using these sub classes
and the part of property we define a hierarchical location
model and represent them using some simple axioms like
“Room is a part of Building”. We use an OWL-DL reasoner
to infer different relations existing between instances of these
sub-classes.

Every activity in our ontology is the sub class of the
Activity class. It is possible to obtain user activities, using
Google APIs, which are related to a device’s motion. For
example if a user is walking, running or in a car or not.
On the other hand we can obtain user activity information
from User’s calendar too. In our ontology we have classes
defined like Professional Activity, Meeting, Lab Meeting,
Professor Meeting, Project Meeting etc. We can see this class
hierarchy from the ontology in Figure 6. This allows us to
define a hierarchical activity generalization model via sub class
relationships between generic and specific activities. Imagine
a scenario where an app is collecting microphone data and we
want to protect private lab information. We can then define
policies for Lab Meeting or we can define activity context
based policies for any “Meeting”, if we want to prevent
recordings at all of our meetings.

A sample view of hierarchical choices can be seen in Fig-
ure 7. Although we have discussed six use case scenarios that
might occur during a policy capture process based on violation
information presented to users, it is possible to have more
use cases which might be beyond even the violation capture
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Fig. 7. Ontology-driven hierarchical options for rule modification

process. One such scenarios would be when a policy rule’s
consequent is modified. This could either negate our initial
rule or may add conditions on what data could be shared.
Such a condition might include data obfuscation techniques.
In this case user will have to add antecedents that define
those limitations. For example, the user might want to share a
fake Location, an inaccurate location or state that location is
unavailable.

Clearly, our policy rules are significantly more complicated
as opposed to a simple permission based model that Android
currently follows. The dynamic nature allowed by the variable
actions and the granularity provided by the contextual an-
tecedents are contributing factors to this complexity. However,
it also gives more control to the user over her data.

Towards automatic rule generation: The use of a hier-
archical context model via an ontology allows us to infer
subsumption relationship between a generic and a specific rule.
As a result, we can use an ontology to infer decisions for
contextual situations, for which no “specific” rules exist. For
example, if there is a rule that states “Do not allow access
to camera at work”. That means any location that can be
determined to be a work location can be assumed to be a
place where camera access is not allowed. However, once
the user modifies this rule to a more specific rule stating
“Do not allow access to camera in university Building” what



can we assume about the locations that are still work and
were part of the rule but are not anymore? Can we generate
more policies that state “Do not allow camera access in
university parking lot”? We can discard the rule that states
access denied at cafeteria as we observed the user’s response
to that specific violation but what about the other conditions?
Given that our ontology defines the state of the world, we
can possibly generate all such conditional rules using our
hierarchical context model. In a similar way, if we observe,
as per our contextual model, rules being added for every sub
class or context piece at a particular hierarchy then we can
infer a more generic antecedent for the specific context piece
and reduce the rule set to a smaller set. To the extent of
what context we can capture in this hierarchical manner, we
may generate rules for a user automatically. Given our system
design and an initial policy for a user category, we can carry
out the reduction and expansion of policies into a bigger and
smaller set of rules. However, such reduction or expansion is
beyond the scope of the current paper.

VI. EXPERIMENTAL RESULTS

We used a LG Nexus 5 device with CM13 for our exper-
iments. For this study we wanted to show the usability of
the Violation Metric (VM) as a way to determine if user’s
preferred policy had been captured or not.

A. Experimental setup:

We setup the experiment with about a 100 different policies
curated by hand using various combinations of contextual
situations that we envisioned. Some of our sample loca-
tion context included: Home, Work, Lab, Department Office,
Classroom, Meeting Room, Supervisor Office. Sample ac-
tivity context included: Sleeping, Dining, Traveling, Per-
sonal Activity, Professional Activity, Meting, Lab Meeting,
Studying, Project Work. We also used presence info and
temporal context of working and non-working hours, in our
rules. As stated in our assumptions in Section III-B, the above
semantic context is available to the prototype system. For
simplicity of experimental setup, we used NFC tags that were
programmed with contextual situations to simulate changes
in context. After a context change was observed, we use an
automated script to start various apps on the mobile device
that would violate our default policy P. The examples of such
violations has been discussed Section IV. All automated user
behavior on the mobile device was created using monkeyrun-
ner API from Android [30].

B. Observations and discussions

After each feedback iteration, we recorded the value of
the VM metric. Take a look at the graph in Figure 8. Our
simulation includes experiments that VM metrics over eight
feedback iterations from our simulated user. It shows that
the variation in VM metric when a user provides consistent
feedback over a number of iteration cycles. You can see when
the feedback is consistent, the VM metric steadily increases
towards a high value. The predefined threshold we use, may be

Fig. 8. Consistent feedback in policy rule changes by user

varied by a system admin. However, when MITHRIL reaches a
state with high precision as determined by the VM metric, we
are able to conclude that policy capture process is complete,
and we may transition from OBSERVER mode to ENFORCER
mode.

The VM metric initially shows a low value as a lot of
policies are being modified. As iterations go by, we see a
decline in the number of FALSE violations. Once a violation
has been determined to be TRUE we will not require a
feedback from user on that rule, anymore. As a result of
that, in the graph, we see a constant decline in the number of
violations and the VM metric increases in value, getting upto
0.9 by our last feedback iteration. As explained before, this
means that whatever violations the system records are denoted
as TRUE violations and we have captured the user’s preferred
policy.

Understandably, the VM metric does have certain limita-
tions when it comes to user feedback being erratic. However, in
a hostile user situation we believe that no system can perform
well. However, in case of a consistent feedback, the system
is capable of capturing the preferred user policy and also in
determining the state of the system effectively.

VII. CONCLUSIONS

Capturing users’ privacy and security policies is not a
new goal. Significant research work has been done in this
field. However, all the research has brought us to a point
where we are capable of generalizing access control to user
policy profiles. In our current research, we are representing
access control policies on mobile devices using Semantic
Web technologies like SWRL and OWL. We are capturing
user preferred policy rule modifications using a hierarchical
context model and an iterative feedback process. We have
designed and developed a prototype system to capture policy
modifications required for user policy. The system has two
working modes OBSERVER and ENFORCER. We only observe



system behavior in OBSERVER mode and we execute access
control policies captured by our system in ENFORCER mode.
We use a violation capture methodology and a violation metric
to determine system state. Finally, we infer policy decisions
using an OWL-DL reasoner and hierarchical context model
defined in the Platys ontology. We use the inferred policy
decisions to handle access control on a mobile device using a
custom ROM and an app with root privileges.

Any system which defines methods of actual user study
have to handle usability issue. Such issues could be mitigated
by conducting real world studies. However, we only used a
simulated user study due to the fact that our goal was to
show the effectiveness of the violation metric, in determining
transitional state of a policy capture system. We argue that
such effectiveness may be shown using simulated studies like
we have carried out.

As part of future work, we would like to extend the exper-
imental scenarios and study more variations in user feedback
patterns. A complete end-to-end system implementation with
real context generation from sensors and consequent release
in Google Play Store [24] is another goal. Currently, we do
not use any predictive or generative model for policy rule
modification. An obvious future work would be in pattern
recognition in user’s feedback process and predicting feedback
for rules in known antecedent feature space.
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