
CONTEXT-DEPENDENT PRIVACY AND SECURITY
MANAGEMENT ON MOBILE DEVICES

by

Prajit Kumar Das

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, Baltimore County in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2017

Advisory Committee:
Anupam Joshi, PhD, Chair
Tim Finin, PhD, Co-Chair
Tim Oates, PhD
Nilanjan Banerjee, PhD
Arkady Zaslavsky, PhD
Dipanjan Chakraborty, PhD

ABSTRACT

Title of Dissertation: CONTEXT-DEPENDENT PRIVACY AND
SECURITY MANAGEMENT ON
MOBILE DEVICES

Prajit Kumar Das
Doctor of Philosophy, 2017

Dissertation directed by: Prof. Anupam Joshi and Prof. Tim Finin
Department of Computer Science and
Electrical Engineering

There are ongoing security and privacy concerns regarding mobile platforms that

are being used by a growing number of citizens. Security and privacy models typically

used by mobile platforms use one-time permission acquisition mechanisms. However,

modifying access rights after initial authorization in mobile systems is often too tedious

and complicated for users. User studies show that a typical user does not understand

permissions requested by applications or are too eager to use the applications to care

to understand the permission implications. For example, the Brightest Flashlight appli-

cation was reported to have logged precise locations and unique user identifiers, which

have nothing to do with a flashlight application’s intended functionality, but more than

50 million users used a version of this application which would have forced them to

allow this permission. Given the penetration of mobile devices into our lives, a fine-

grained context-dependent security and privacy control approach needs to be created.

We have created MITHRIL as an end-to-end mobile access control framework

that allows us to capture access control needs for specific users, by observing violations

of known policies. The framework studies mobile application executables to better in-

form users of the risks associated with using certain applications. The policy capture

process involves an iterative user feedback process that captures policy modifications

required to mediate observed violations. Precision of policy is used to determine con-

vergence of the policy capture process. Policy rules in the system are written using

Semantic Web technologies and the Platys ontology to define a hierarchical notion of

context. Policy rule antecedents are comprised of context elements derived using the

Platys ontology employing a query engine, an inference mechanism and mobile sen-

sors. We performed a user study that proves the feasibility of using our violation driven

policy capture process to gather user-specific policy modifications.

We contribute to the static and dynamic study of mobile applications by defin-

ing “application behavior” as a possible way of understanding mobile applications and

creating access control policies for them. Our user study also shows that unlike our

behavior-based policy, a “deny by default” mechanism hampers usability of access

control systems. We also show that inclusion of crowd-sourced policies leads to fur-

ther reduction in user burden and need for engagement while capturing context-based

access control policy. We enrich knowledge about mobile “application behavior” and

expose this knowledge through the Mobipedia knowledge-base. We also extend context

synthesis for semantic presence detection on mobile devices by combining Bluetooth,

low energy beacons and Nearby Messaging services from Google.

c© Copyright by
Prajit Kumar Das

2017

APPROVAL SHEET

Title of Dissertation: CONTEXT-DEPENDENT PRIVACY AND
SECURITY MANAGEMENT ON
MOBILE DEVICES

Name of Candidate: Prajit Kumar Das
Computer Science, 2017

Dissertation and Abstract Approved:
Anupam Joshi, PhD
Professor, Chair
Department of Computer Science and
Electrical Engineering

Date Approved:

To Mom and Dad;

who loved in absence of reason,

who believed in absence of conviction,

who supported in absence of outcome!

i

Acknowledgments

I would like to express my deepest gratitude to my advisors Dr. Joshi and Dr.

Finin. They have been incredible mentors to me. They understood my strengths and

weaknesses and have always steered me in the right direction. They pushed when re-

quired, while being supportive in letting me work at my pace. I learned a lot from them,

about Computer Science and about research life.

I owe a debt of gratitude to my dissertation committee; Drs. Oates, Banerjee, Zaslavsky

and Chakraborty. Their critical inputs were vital for my research and have hopefully

allowed me to make a contribution to the field of mobile access control.

I will forever be indebted to all members of the Ebiquity Research Group that made

this dissertation possible. Some of my friends like Abhay, Sunil, Jenn, Clare, Lisa,

Mahbub, Ankur, Rajarshi, Dibyajyoti, Shehab, Sayantan and Varish have provided crit-

ical feedback on my work, for years. I am thankful to them for listening to my rants,

speeches and presentations. I have had some incredible collaborators through my grad-

uate studies like Roberto, Primal, Varish, Sandeep and Sudip and I am thankful to them

for collaborating with me. Being a non-native speaker of a language comes with quirks

that one might find difficult to avoid while writing. Therefore, I am extremely thankful

to Renee and Shehab for proof-reading this dissertation and my research papers.

The splendid work that the CSEE department staff do every day, to keep our work free

of complications, has huge implications on students finishing their dissertation on time.

I am very thankful for their hard work, constant support and kind words (or ice-cream

recipes) I received from Jane, Vera, Olivia, Keara, Dee Ann and Kara.

ii

I understand the value of and appreciate the support I received through several of

my advisor’s grants including NSF grants 0910838, 1228198, 1439663, MURI award

FA9550-08-1-0265 from the Air Force Office of Scientific Research, funds from the

Oros Family Professorship, UMBC CSEE Department Award and the UMBC Graduate

School Dissertation Fellowship.

Finally, I would like to thank my parents for helping me pursue my dreams.

iii

Table of Contents

List of Tables vii

List of Figures viii

List of Abbreviations x

1 INTRODUCTION 1
1.1 Problem description . 2

1.1.1 Thesis statement . 2
1.1.2 MITHRIL framework . 3

1.1.2.1 Policy capture . 3
1.1.2.2 Mobile application analytics 4

1.2 Contributions . 5
1.3 Dissertation document structure . 6

2 BACKGROUND AND RELATED WORK 8
2.1 Android background . 8

2.1.1 Android security model . 11
2.1.2 Application signatures and permissions 11
2.1.3 Application operations . 14

2.2 Access control background . 15
2.2.1 Policy representation . 15

2.3 Mobile security research . 17
2.4 Usable privacy research . 19
2.5 Context discovery research . 20

3 CONCEPTUAL MODEL OF MITHRIL 22
3.1 Concepts of MITHRIL . 23
3.2 Motivation for Context-dependent access control 25
3.3 Framework design . 27

3.3.1 Framework component: MithrilAC middleware 27
3.3.2 Context ontology . 27
3.3.3 Presence context using Nearby 29
3.3.4 Violation Metric . 29
3.3.5 Dual operational mode . 31
3.3.6 User Feedback Algorithm . 33
3.3.7 Framework component: Heimdall back-end 35

4 POLICY CAPTURE MIDDLEWARE 38
4.1 Approach to policy capture . 38

4.1.1 Assumptions . 40
4.1.2 Policy Store . 41
4.1.3 Policy Decision . 43

iv

4.1.4 Policy Enforcement . 45
4.1.5 User Policy Control . 45

4.2 Use Case Scenarios . 46
4.2.1 Use case - True Violations: . 49
4.2.2 Use case - False Violations: 50

4.3 System Implementation . 53

5 APPLICATION ANALYTICS BACK-END 60
5.1 Approach to Mobile Application Analytics 60
5.2 Machine Learning pipeline setup . 63

5.2.1 Download module . 63
5.2.2 Annotation module . 64
5.2.3 System call module . 67
5.2.4 Feature generation module . 68
5.2.5 Classification module . 69
5.2.6 N-grams of system calls . 69

5.3 Malware detection . 70
5.4 About Mobipedia . 71

5.4.1 Adding behavior knowledge into Mobipedia 72
5.4.2 Accessing Mobipedia . 72

6 CHALLENGES OF POLICY EXECUTION 75
6.1 Android security mechanisms . 76
6.2 Enhancements in policy execution . 80
6.3 Challenges and solutions . 81

7 USER-STUDY CHALLENGES 84
7.1 Default deny policy . 84
7.2 Crowd-sourced policy . 85

8 EVALUATIONS 90
8.1 Policy capture . 90

8.1.1 Automated study: experimental setup 90
8.1.2 Automated study: results . 92
8.1.3 User study: round 1 results . 93
8.1.4 User study: round 2 results . 95
8.1.5 Reduction in user interaction required 97

8.2 application analytics . 98
8.3 Deeper dive into application behavior 105
8.4 Malware detection . 114

8.4.1 Risk computation using feature importance 115
8.5 Discussion: Statistical significance . 117

9 CONCLUSION 119
9.1 Future Work . 121

v

Bibliography 122

vi

List of Tables

5.1 Annotated application categories . 65
5.2 Google Play Category . 66

8.1 User study violation statistics . 97
8.2 Annotated class labels, TF-IDF features 100
8.3 Annotated class labels, one hot features 100
8.4 Google class labels, TF-IDF features 101
8.5 Google class labels, one hot features 101

vii

List of Figures

1 Android stack courtesy: Google . 10
2 Android run time permissions . 12

1 MITHRIL conceptual model . 22
2 SWRL representation for example rule 32

1 Simple rule for controlling social media camera access 42
2 Rule with higher granularity, for controlling social media camera access 43
3 Transitions shown for prototype app 46
4 MithrilAC middleware architecture . 48
5 Rule violation meta-data displayed to user 49
6 Snapshot of Platys Ontology defining context hierarchy 56
7 Ontology-driven hierarchical options for rule modification 58

1 Design of system built for studying application behavior 61
2 System calls . 68
3 Excerpt of the Mobipedia ontology. 72
4 Linked Data interface of Mobipedia as seen in a web browser. 74

1 Settings of Privacy Guard . 77
2 Permission screen for a specific app 78
3 Permission settings on Android Nougat 7.1.2 79

1 Comparing #violations and #no-response in user study round 1 85
2 Comparing #violations and #no-response in user study round 2 86
3 User feedback to questionnaire . 89

1 Consistent feedback in policy rule changes by user 91
2 Average number of policy changes made per user in round 1 94
3 Average “Violation Metric” per user across multiple iterations in round 1 95
4 Average “Violation Metric” per user across multiple iterations in round 2 96
5 Comparing user no-response and violations over time 98
6 To do list class . 103
7 Scientific calculator class . 104
8 Best possible precision for Annotated class labels using 1-hot features

and Uni-gram model . 106
9 Best possible recall for Annotated class labels using call frequency fea-

tures and Uni-gram model . 107
10 Best possible precision for Annotated class labels using call frequency

features and Uni-gram model . 108
11 Best possible recall for Annotated class labels using 1-hot features and

Uni-gram model . 109
12 Best possible precision for Annotated class labels using TF-IDF fea-

tures and Bi-gram model . 110

viii

13 Best possible recall for Annotated class labels using TF-IDF features
and Bi-gram model . 111

14 Best possible precision for Google categories using TF-IDF features
and Uni-gram model . 112

15 Best possible recall for Google categories using TF-IDF features and
Uni-gram model . 113

16 Static features like permissions perform better application behavior clas-
sification . 114

17 F1 - scores for malware detection using 10 classifiers 115
18 Feature importance can be used to determine malware 116
19 Features important in detecting malware 117

ix

List of Abbreviations

API Application Programming Interface
BOW Bag-of-words
IDF Inverse Document Frequency
TF Term Frequency
SVM Support Vector Machine
APK Android Package Kit
SWRL Semantic Web Rule Language
OWL Web Ontology Language
DL Description Logics
JAR Java ARchive

x

Chapter 1

INTRODUCTION

The future is Mobile! Mobile devices are the primary medium of user engage-

ment [8] today, surpassing the number of PCs on Earth. During I/O 2017, Google

announced that the Android platform has over two billion monthly active users and Ap-

ple declared that they had sold the one billionth iPhone in July 2016 [59]. There are

more than 3 million mobile applications on the Google Play Store [78] and the Apple

mobile application Store contains over 2.2 million mobile applications [79]. In spite of

their massive popularity, these platforms have not had any major modifications to their

access control model since inception. Both platforms use application sandboxes for

mobile applications’ operations and use a permission based security model to provide

access to system resources that are required for such operations. Users are expected to

decide which of these access requests are to be allowed and which ones to deny. Un-

fortunately for users though, mobile device proliferation has provided fraudsters and

identity thieves with ample opportunity to violate user privacy and security and steal

users’ data.

Users’ personal devices are not the only devices that face challenges with respect

to access control. The Bring-Your-Own-Device (BYOD) principle, adopted by corpo-

rations in recent years [55] creates a key challenge for access control for corporate data,

as well. Similar to a personal device, in corporate environments, access rights can be

1

context-dependent. For instance, it might be permissible to send some generic data over

the corporate VPN, but not have it uploaded to Facebook. It might be OK to use the

camera generally, but not inside the company facility. Reporting GPS locations to a

platform provider (e.g., Google, Apple) might be fine in general, but not when inside a

sensitive compartmented information facility (SCIF). The current “permit once” model

followed by most mobile OSs are inadequate for handling such context-dependent ac-

cess control tasks. In light of such potential problems, we submit that there is a need for

fine-grained, dynamic and context-driven access control policies to protect the privacy

and security of a user and her data.

1.1 Problem description

The challenges of mobile access control and the risks to users’ data leads to two

major problems. The first problem is a need for methodologies to detect events hap-

pening on a user’s device, in a specific context and capturing users’ preferences when a

mobile application causes these events. The second problem is a need for informing a

mobile user about a mobile application’s expected behavior and providing a pre-defined

policy for mobile applications with such behavior.

1.1.1 Thesis statement

A semi-automated approach that combines mobile application analysis with vi-

olation monitoring techniques can reduce the amount of user interaction required in

capturing better access control policies that are fine-grained and context-dependent.

2

1.1.2 MITHRIL framework

In this work, we have created the MITHRIL 1 framework. MITHRIL is an end-

to-end context-dependent access control framework that monitors mobile application

activities on a user’s mobile device, in various contextual situations and captures their

access control preferences in that context. We use violation metric as the theoretical

model for our framework. It helps us to determine convergence of the policy capture

process.

MITHRIL also studies mobile application behavior and informs users of poten-

tial risks associated with an app. We have built the MITHRIL framework to fulfill the

vision of context-dependent, fine-grained access control on the Android operating sys-

tem. Details of the framework’s operating features on Android have been described

in Chapter 6. We show in this dissertation, that it is fair to use system calls to model

mobile application behavior and then use such a model to create an initial default policy

for users.

1.1.2.1 Policy capture

MithrilAC, the first component of MITHRIL is its mobile access control middle-

ware. In MithrilAC 2, we capture mobile application behavior along-with user-context

and compare them to currently known policy. Any deviation from known policy is

1MITHRIL is a precious, lightweight and extremely strong silver steel from the Lord of the Rings
which protected its wearer, Frodo, from life threatening dangers: http://lotr.wikia.com/
wiki/Mithril

2MithrilAC requires certain operating system level privileges. Android being open source allows us to
make these changes so we have used it for our prototype building but the concepts we have used applies
to all mobile platforms.

3

http://lotr.wikia.com/wiki/Mithril
http://lotr.wikia.com/wiki/Mithril

then submitted for review to user and their feedback helps MITHRIL refine their pol-

icy thus capturing the user’s access control needs. The refinement process is complete

when no new deviations are observed or the precision of the captured policy is above

a pre-defined threshold. We use the Semantic Web Rule Language [39] (SWRL), to

represent our access control policy rules. We use the Platys ontology [41] written us-

ing the Web Ontology Language (OWL) [17], to model a hierarchical notion of user

context. MITHRIL combines information about users’ context, requested information

and requester info as antecedents in policy rules that allows us to express complex rule

conditions.

1.1.2.2 Mobile application analytics

Heimdall 3 is the second component of MITHRIL and acts as the mobile appli-

cation analytics back-end. Heimdall uses machine learning classifiers to accomplish

two separate classification tasks; i.e. classify mobile applications into benign-ware and

malware using static permission features and perform multi-class behavior classification

task using dynamic mobile application features like system calls made by an mobile ap-

plication while running on a mobile device. The behavior classification results are used

to enrich the Mobipedia knowledge-base (KB) [64], which 4 is an evolving KB created

in a previous project. Mobipedia integrates mobile application knowledge from various

sources and publishes it using Semantic Web technologies.

3Heimdall is the all-seeing and all-hearing Asgardian: http://marvelcinematicuniverse.
wikia.com/wiki/Heimdall

4Mobipedia website:http://mobipedia.science

4

http://marvelcinematicuniverse.wikia.com/wiki/Heimdall
http://marvelcinematicuniverse.wikia.com/wiki/Heimdall
http://mobipedia.science

The key results of this work, presented in Chapter 8 proves the feasibility of us-

ing precision of captured policy to determine completion of user policy capture process.

They also prove the feasibility of using dynamic system call features and static mobile

application permission features to determine a mobile application’s behavior class. We

also use the static permission features to detect malware mobile applications and feature

importance to determine application risk. Finally, we show that using a crowd-sourced

policy created using our mobile application analytics leads to reduction in user interac-

tion required in the feedback process.

1.2 Contributions

In this dissertation, we have made the following contributions:

• Created an end-to-end context-dependent access control approach that monitors

mobile application activities on a user’s mobile device, in various contextual situ-

ations and enables the capture of their access control preferences in that context.

• Created a back-end mobile application analytics system capable of determining

mobile “application behavior” and generating an initial default policy based on

crowd-sourced data.

• Created a mobile-middleware system capable of observing mobile application

behavior and using “violation metric” as a way to determine completion of policy

capture process.

• Reduced user interaction required using curated policy output from application

5

analytics back-end

• User study performed to show feasibility of using violation metric

• Custom ROM built for executing context-dependent policies

• Enriched the Mobipedia [63] KB with mobile application behavioral facts.

• Enhanced presence context detection using nearby messages and beacons.

Jointly, these contributions form the MITHRIL framework which aims to provide a

scientific basis for using mobile application behavior and policy violation as a means to

determine mobile application risk and convergence of policy capture process. We have

used machine learning classifiers to perform our behavioral analytics and user study

with 30 users running LineageOS Android custom ROM (same as Android version

7.1.2). It is imperative to note that the user study did not focus on usability, A/B testing

or developing better user interfaces. Rather, we wanted to see the effectiveness of our

methods in helping user’s define their policies.

1.3 Dissertation document structure

• In Chapter 2 we present the background knowledge required to understand this

dissertation. We also discuss the related work from the literature pertaining to

this work.

• In Chapter 3–6 we explain the conceptual model and inner workings of the MITHRIL

framework.

6

• Chapter 7 describes a pilot user study performed with 24 user to prove the effec-

tiveness of using our techniques to carry out user policy capture.

• We discuss our experiments and evaluation results in Chapter 8.

• Finally, we conclude this dissertation with a discussion of our conclusions and

possible future works in Chapter 9.

In the next chapter, we discuss the various related work from the literature and

background knowledge required to understand the domain. users

7

Chapter 2

BACKGROUND AND RELATED WORK

In this chapter, we will look at some of the background knowledge required to

understand the domain. We will also take a look at some related works from the mal-

ware and behavioral analytics, access control, usable privacy, and context generation

domains.

2.1 Android background

Android is an open source, Linux-based software platform containing five ma-

jor components shown in Figure 1. The Android platform is built on top of a Linux

kernel [30]. The hardware abstraction layer (HAL) provides interfaces to the device’s

hardware components that can be utilized by the higher level Java API framework to

perform various tasks. For example, HAL consists of multiple library modules, that

can be used to handle camera or bluetooth functionality. Each and every Android app,

starting from Android version 5.0 (API level 21) or higher, runs in its own process

and with its own instance of the Android Runtime (ART). ART is capable of running

multiple virtual machines on low-memory devices by executing DEX files. DEX is a

Dalvik EXecutable file using a bytecode format designed specially for Android that’s

optimized for minimal memory footprint. Android also includes a set of core runtime

libraries that provide most of the functionality of the Java programming language, in-

8

cluding some Java 8 language features, that the Java API framework uses. The Java

APIs form the building blocks of Android mobile applications by simplifying the reuse

of core, modular system components and services, which include a View System one

may use to build a mobile applications UI, a Resource Manager, providing access to

resources like localized strings and layouts, a Notification Manager enables mobile ap-

plications to display custom alerts, an Activity Manager that handles application life

cycle and Content Providers like Contacts. Many core Android system components and

services, come in the form of native libraries written in C and C++. The Java frame-

work APIs are used to provide interface to these functionalities. A core set of vital

mobile application functionality are provided on Android devices using system mobile

applications like Settings, email, SMS, calendars, browsing, contacts etc. These mobile

applications are traditionally installed on the /system partition of the device and have a

set of privileges unavailable to mobile applications installed to user-installed apps. Any

mobile application that wants to control how resources are accessed on the device needs

to have certain privileges that are only available to System apps.

9

Figure 1: Android stack courtesy: Google

10

2.1.1 Android security model

The kernel [67] is a computer program that is the first program to be loaded when

the machine boots up and has complete control over every resource in the system. The

kernel connects application software to the hardware of a computer using a low-level

interface known as a system call. Android takes advantage of the security features

offered by the Linux Kernel. Like in Linux, Android is also a multi user operating sys-

tem. However, unlike a traditional desktop system where users have user ids assigned

to them, Android assigns applications with a unique UID at installation time. Each mo-

bile application on Android runs in a dedicated process associated with it’s UID and is

also given a dedicated data directory to which only the application has permission to

read and write. Thus Android mobile applications are isolated in their sandbox both at

process as well as data levels.

The sandbox however, creates a new problem. Applications that can only access

their own files cannot really provide any interesting functionality to their users. In

order to use any resources on the device, Android mobile applications have to explicitly

request a permission that would allow it to say, connect to the Internet or use some

service like location.

2.1.2 Application signatures and permissions

Android applications are signed with a digital key created by their developer. This

allows the system to enforce signature permissions for an application’s target processes

and shared user ids. Android uses four keys to maintain platform security:

11

Figure 2: Android run time permissions

• platform: key for packages part of the core platform

• shared: a key for packages shared in the home/contacts processes

• media: a key for packages part of the media/download system

• testkey: default key to sign when unspecified

Keys come as two separate files: the certificate, with extension .x509.pem, and

the private key, with extension .pk8. The private key is used to sign the application

12

package and should be kept secret. The certificate, in contrast, contains the public

key and is used to verify a package has been signed by the corresponding private key.

Android Package Kit (APK) is the file format used for distribution of mobile application

executables for the Android Operating System. Prior to distribution, the APK file needs

to be signed by the developer private key. When a new version of an application is

created, that APK also needs to be signed by the same key as the old application in

order to get access to the old applications data. Otherwise, the old application would

have to be uninstalled before the new version is installed. Two or more applications

may share data or each others’ resources by defining a shared user ID and signing all

applications with the same key. Application signatures allow the Android operating

system to associate access rights to them through a Linux UserID. Android has two

types of “permissions:”

• Standard UNIX/Linux file system permissions

• Android (JAVA) API permissions

A discussion on Linux file system permissions is beyond the scope of this work.

Android API permissions on the other hand are something that we do control. Most

low-level system functionality in Android are provided using system calls but mobile

applications mostly access Android high-level APIs. These APIs in turn communicate

with the low-level system calls that have the proper permissions to access the drivers and

components defined in the Hardware Abstraction Layer or the Linux kernel. In order

to access these low-level system services through the high level APIs, applications are

required to request Android API permissions. These requests are included in a file

13

called the AndroidManifest.xml. Android permissions have potential risks implied that

are defined using protection levels:

• A “normal” protection level implies lower-risk permission that gives requesting

applications access to isolated application-level features, with minimal risk to

other applications, the system, or the user.

• A “dangerous” permission implies higher-risk permission that would give a re-

questing application access to private user data or control over the device that can

negatively impact the user. Starting from Android 6.0 Marshmallow dangerous

permissions have to be explicitly allowed by users at run-time when the mobile

application tries to use it the first time. See Figure 2. If not handled properly by

a developer, this causes a SecurityException.

• “signature” is a permission that is granted only if the requesting application is

signed with the same certificate as the application that declared the permission.

• Finally, “signatureOrSystem” is a permission that the system grants only to ap-

plications that are in the Android system image or that are signed with the same

certificate as the application that declared the permission.

2.1.3 Application operations

AppOps or application operations is an Android API that was first developed as

part of Android 4.3 “Jelly Bean” and was removed from the public API as of Android

4.4.2 “KitKat”. The API is now hidden and no longer accessible in the public Android

14

SDK. This API allowed programs to interact with “application operation” tracking on

a mobile device. It is part of the AppOpsManager class and instances of this class

must be obtained using Context.getSystemService(Class) with the argu-

ment AppOpsManager.class or Context.getSystemService(String)

with the argument Context.APP OPS SERVICE. As of Android 7.1.2, it is only

possible to access this API through a rooted phone on a custom ROM that does not

block access to the API for third-party applications. Using this API it is possible to

revoke a permission granted to an mobile application during installation or at run-time.

In Chapter 6, we describe how we took advantage of Android APIs and how we

created a “hacked” version of the Android SDK to build a system level application. We

also built the vision of context-dependent, fine-grained access control on Android by

recompiling a custom ROM of our own based on Android version 7.1.2, which is the

current official version of Android.

2.2 Access control background

The domain of access control is well researched. We discuss some of the areas of

access control, that are relevant to this work.

2.2.1 Policy representation

Role Based Access Control (RBAC) [1] and Attribute Based Access Control

(ABAC) [40] are two most popular access control models, that have been used to

achieve the goal of managing access control, in various domains. In the mobile do-

15

main, Ghosh et. al. [27] used a semantically rich context model to manage data flow

among applications and filter them at a deeper granularity than it was possible using

available security mechanisms on smart-phones. The CRêPE system [14] was one of

the earliest known ABAC model implementations using the XACML standard [65] for

fine-grained context-related policy enforcement on smart-phones. CRêPE didn’t use

Semantic Web but it followed the ABAC model.

Kagal et. al. [45] used distributed policy management as an alternative to tradi-

tional authentication and access control schemes. Rei, a policy language described in

OWL and modeled on deontic concepts of permissions, prohibitions, obligations and

dispensations [45], have used Semantic Web technologies to express what an entity

can/cannot do and what it should/should not do. In Rei, credentials and entity prop-

erties like user, agent, etc. are associated with access privileges. This allowed Rei to

describe a large variety of policies ranging from security policies to conversation and

behavior policies. The Rein framework [44] which builds on Rei and is based on N3

rules and uses a CWM reasoning engine for distributed reasoning. KAoS [81] relies

on a DAML description-logic-based ontology of the computational environment, appli-

cation context, and the policies. The KAoS system was capable of supporting runtime

policy changes and was extensible to a variety of platforms. In ROWLBAC [23], the

Web Ontology Language (OWL) [17] was used to support the standard RBAC model

and extending OWL constructs used to model ABAC.

In our work, we use Semantic Web technologies like an hierarchical context ontol-

ogy defined using the Web Ontology Language (OWL) [17]. Our rules are defined using

16

the Semantic Web Rule Language [39] that allows us to express rules that are more ex-

pressive than ones that can be defined using OWL. We use ABAC as our access control

model. On the mobile device, we have used reasoners created by Roberto et. al. [88] for

Android devices to extract and infer knowledge about user context. MITHRIL’s mobile

middleware connects context data to a high-level abstraction of context and executes

defined rules to protect user data.

2.3 Mobile security research

Security research in mobile domain has focused on three different aspects, mal-

ware detection, static/dynamic code analytics and mobile application behavioral stud-

ies.

Mobile malware detection [7, 12, 56, 77, 80, 90] has shown a fair amount of suc-

cess. However, a 2014 McAfee Labs report [76] predicted that mobile technologies

would see an escalation of attacks, due to openly available mobile malicious source

code. Malware are not the only threats faced by mobile users anymore. A Google tax-

onomy provides us with additional threats that users face through Potentially Harmful

mobile applications (PHA) [75], such as Billing Frauds, Spyware, Hostile Download-

ers, Privilege Escalators, Ransomware and Rooting mobile applications. According to

this report, the mobile threat model has changed and today a PHA mobile application

may use legitimate components of user’s device in addition to using operating system

security vulnerabilities to harm users. In fact, legitimate and popular mobile applica-

tions like Pandora and Deutsche Telekom [9] have been previously reported to create

17

serious privacy and security concerns over handling of user sensitive data like location,

device id and other personally identifiable information (PII) including gender and year

of birth.

TaintDroid [20] is a dynamic code analytics project that performed dynamic taint

tracking to detect when data leaves a user device [20]. Few other static code analysis

projects attempted to mix static code analytics with malware detection [24, 69, 68].

NLP techniques have been used by Pandita et. al. [62] to perform mobile application

behavioral analysis. This project was able to achieve an 83% precision and 82% recall in

determining why an application uses a permission through NLP techniques. Although

a good first step in behavioral analysis, it leaves a lot of room for improvement because

their analysis included only 3 popular permissions used by apps.

In [34], researchers have attempted to map an application’s description from the

Google Play Store [28] to its actual behavior. Their analysis provided the following

insights:

• Application vendors hide what their mobile applications do. While Google main-

tains no standards to avoid deception on a developer’s part. This results in de-

velopers deceiving users. One such incident occurred in case of the “Brightest

Flashlight” mobile application, when it collected user location and surreptitiously

uploaded the same to an advertising network [47].

• The other insight was Android’s permission model is flawed and requires lay

users to read incomprehensible permission descriptions like “allow access to the

device identifier”. We use our behavioral analysis technique to determine expec-

18

tations from an app, which can then be matched to appropriate restrictive policies.

A study by Kosoresow et. al. [48] tells us that system calls can be used to de-

termine application behavior. Consequently, we use system call analytics in our work

to achieve the complicated goal, of mobile application behavior classification. We con-

sider this task to be complicated when compared to malware classification because it

is sometimes difficult to determine if an application’s behavior was a legitimate func-

tionality or an illegitimate behavior. We attempted to capture this distinction in our

annotation process.

2.4 Usable privacy research

The state-of-the-art in research on policy capture stops at determining general-

ized privacy profiles [2, 72, 52, 54]. These works conclude that it was possible to create

privacy “profiles” applicable to user categories on mobile devices with reasonable ac-

curacy. When it comes to defining their own rules, it was observed by Sadeh et.al. [72]

that users were not good judges of how well a rule meets their true needs or prefer-

ences. However, in their other work, Sadeh et.al. [53] showed that with enough “pri-

vacy nudges”, explaining how their location was being shared, users could be guided

into modifying their preference. We argue that given a set of policy violations and a

hierarchical context model, users would be able to define their preferred policy. We fo-

cus on using context generalization and specialization with assistance from our Platys

ontology [41] driven context model, and combining that with user feedback to reach an

individual user’s preferred specific policy.

19

An important issue with privacy preservation on mobile devices is that users tend

to be privacy pragmatists [49]. Although every person would prefer that their data

remain secure and private, the moment they realize the potential advantage of using an

application, they choose to ignore such preferences. One way to ensure user data remain

private and secure would be to educate them about mobile application behavior. For that

purpose, MITHRIL uses system call analytics to perform mobile application behavior

classification. Upon successfully classifying a mobile application into it’s behavior

class, a policy for that class is created in our system using crowd-sourced data. To the

best of our knowledge, app-behavior classification and policy association has not been

carried out by anyone to date.

2.5 Context discovery research

Context discovery on mobile devices [89] has shown significant success with se-

mantic location [50, 89], activity recognition and complex activity recognition [11, 22,

73], and situational awareness [86, 5]. This work takes advantage of knowledge of

context discovery techniques from earlier projects and adds-on a preliminary presence

context detection mechanism. In addition to the standard context information of loca-

tion and activity, we use Android Nearby APIs and Bluetooth IDs to discover presence

information. In our previous work [16], we used the Nearby API [31] from Android

along with beacons to answer questions while preserving privacy of the enterprise data.

We incorporate those techniques in the current work but reverse it to detect presence of

relevant actors to our user.

20

In the next chapter, we discuss the conceptual model for MITHRIL.

21

Chapter 3

CONCEPTUAL MODEL OF MITHRIL

In this chapter we describe the high-level conceptual model of the MITHRIL

framework (see Figure 1 for the conceptual design diagram). Additionally, we present

our algorithm for violation-based policy capture. Next, we define some technical terms

and concepts involved in this dissertation.

Figure 1: MITHRIL conceptual model

22

3.1 Concepts of MITHRIL

We have mentioned policies and policy rules previously. A policy applies to a user

and her device and consists of a set of rules that control the behavior of an application

in a given context. Following, is a formal definition of “rule” by Fuernkranz [25]:

Definition 1. [...] an expression of the form:

IF Conditions THEN c

where “c” is a class label, and “Conditions” are a conjunction of simple logical tests

describing properties that have to be satisfied for the rule to ‘fire’.

MITHRIL uses context-sensitive privacy policy rules defined in the Semantic Web

Rule Language (SWRL) [39] to manage the privacy of data. The abstract syntax for

SWRL rules follow the Extended Backus-Naur Form (EBNF) notation which, while

useful for XML and RDF serializations, isn’t particularly easy to read. For readabil-

ity, we use the following informal format: antecedent ⇒ consequent. An-

tecedent(s) must hold for a consequent to apply. Multiple antecedents in a rule are

defined as a conjunctions of atoms. The consequent atom states whether the access

is allowed or denied. Antecedents in our rule specification consist of the context of a

requesting entity, along with the entity type that is being requested. A more abstract rep-

resentation may be considered as a triple (R, C, Q) which contains: R, that represents

the requester’s context, C is user’s context and Q is the query received by the system.

The user context ‘C’ follows the definition suggested by Dey et. al. [18]:

Definition 2. “[...] any information that can be used to characterize the situation of an

23

entity. An entity is a person, place, or object that is considered relevant to the interac-

tion between a user and application, including the user and applications themselves.”

Dey et. al. [18] also decompose context into two categories: primary context

pieces (i.e., identity, location, activity, and time) and secondary context pieces (pieces of

context that are attributes of the primary context pieces e.g., a user’s phone number can

be obtained by referencing the user’s identity). Secondary context could provide us with

added knowledge, but in MITHRIL, we have focused only on primary context pieces to

reduce the complexity of the rule capture process and to reduce energy consumption of

our rule execution system. Additionally, since our work focuses on user specific mobile

access control policies, the use of identity becomes redundant. Therefore, we use the

presence information, or who is nearby to our mobile user as part of our user context.

We have previously stated policy rules in our framework are fine-grained. “Fine

grained” access control refers to the

Definition 3. “[...] amount of details that define whether a certain permission will be

granted or denied.”

For example, attribute-based access control [43] through a standard like XACML [65]

can consider attributes about users, resources, environment and for deciding whether to

grant or deny an access. Role-based access control (RBAC) on the other hand focuses

on user role thus losing some granularity of control. When applied to mobile access con-

trol, this essentially signifies that we are considering user context, application attributes,

resource requested etc. to decide if the access request will be granted or denied.

User access control policy in MITHRIL are context-dependent. “Context-dependent”

24

policy refers to

Definition 4. “[...] any set of rules that allows access control over data depending on

current context.”

Essentially, access control decisions are dependent on user location, what activity

they are involved in, time of day or who is nearby to the user (i.e. is the user in presence

of their co-workers, superiors, subordinates, family, strangers etc.)

3.2 Motivation for Context-dependent access control

Context-dependent access control is at the epicenter of this work, so we need to

take a look at couple of motivating examples to further elucidate this key concept. Let’s

assume for a moment that we have the ability to determine if an application is “safe”.

Example 3.2.1. Let’s take a look at Jane Doe, a researcher working at a university on

a government project. She regularly meets representatives of the government agency

for her work. She uses two calendar mobile applications to manage her meetings. Her

university calendar called UniCal and another calendar application called SmartCal

with interesting features like auto to-do lists, etc. She receives calendar invites on her

mobile device, a phone that she uses for both personal as well as, work purposes. Given

the sensitive nature of her work she prefers that any calendar information about her work

remain inaccessible to SmartCal. She is careful and shares her work related information

through a work email id, which is only accessible when she’s behind the firewall at

the university. We assume that her calendar provider, a mobile component that allows

mobile mobile applications to access calendar data, does not store the data on the phone

25

in order to save space and fetches it dynamically when requested. We know that the

only way a calendar application can use a calendar provider on the phone is to ask for

the mobile operating system’s calendar permission from Jane. When she first installed

SmartCal, she allowed the calendar permission. She now realizes that allowing this

permission can lead to potential data-breaches and has to go and block it every time

before she uses her corporate calendar at work. Now, imagine we have a permission

model that dynamically blocks access to calendar data at her work location for her

mobile applications unless the application has been specifically approved. A rule-set

that ensures calendar access be allowed to SmartCal only if Jane is NOT at Work would

prevent such a data-breach.

...a dynamic context-dependent privacy policy would stop such a data-breach

Example 3.2.2. Let us take a look at another example. Jane recently found a calculator

application with interesting features like unit conversion, date conversion etc. The de-

fault mobile application that came pre-installed on her device can only do simple arith-

metic computations. She installs this application and discovers that it requests location

access. She finds it a bit odd, but decides to use the application because sometimes she

uses it’s unit conversion feature. She allows location access but doesn’t realize that this

application tracks people with jobs in the government sector near a specific location,

supposedly to provide targeted ads, but really for nefarious reasons. Now, imagine a

mobile operating system that explains to her that this application could potentially be

unsafe because calculator mobile applications generally don’t need location to function.

Given such a warning, she could have made the decision to uninstall the application or

26

block location access when she’s in her Work state (which is a sensitive piece of data for

Jane). Note we are using a hierarchy of context in this case to provide greater location

coverage for a defined policy. This is equivalent to creating a dynamic policy, for our

questionable app, at every location in Jane’s work state.

...a hierarchical context-dependent policy would stop exposure of such sensitive data

3.3 Framework design

MITHRIL has two major components as shown in Figure 1. MithrilAC mobile

middleware and Heimdall application analytics back-end.

3.3.1 Framework component: MithrilAC middleware

MithrilAC is the primary component of MITHRIL. It is a mobile middleware

with system manipulation privileges and uses context-dependent policy rules to manage

access control on the device. Context in MITHRIL is defined using a hierarchical model

that was first proposed in research work done in the Platys project [42].

3.3.2 Context ontology

The MithrilAC middleware uses the Platys ontology that allows us to define a

high-level abstraction of context. The Platys project [41] builds on previous work where

strong support for context reasoning using ontologies for explicit semantic representa-

tion of context [10] has been developed. MithrilAC uses Semantic Web technologies

to specify high-level, declarative policies in the form of SWRL rules. In this ontology,

27

context is modeled to include a semantic notion of a Place. Although Android APIs

capture a user’s location at the level of position, i.e., geospatial (latitude-longitude)

coordinates, it can then be mapped to a Place or geographic entity, such as a region,

political division, populated place, locality, and physical feature. A position while be-

ing valuable on it’s own, from the standpoint of context, Place is a more inclusive and

a higher-level abstraction. Using the Platys ontology a User is associated with a De-

vice whose Position maps to a geographic place (GeoPlace) such as “UMBC” and to

a conceptual place (Place) such as “At Work”. Some GeoPlaces are part of others due

to spatial containment and such relationship (part of) is transitive. The mapping from

Positions to GeoPlaces is many to one and the mapping from Positions to Places is

many-to-many (the same Position may map to multiple Places, even for the same User;

and, many Positions map to the same Place). Mapping from Positions to Places is done

through GeoPlaces (maps to is a transitive property). An Activity involves Users under

certain Roles, and occurs at a given Place and Time. Activities have a compositional na-

ture, i.e., fine-grained activities make up more general ones. This approach reflects the

pragmatic philosophy that the meaning of a place depends mainly upon the activities

that occur there, especially the patterns of lower-level activities. The idea applies at both

the individual and collaborative level. Such hierarchical context enables generalization

or specialization of conditions that apply for a policy rule.

28

3.3.3 Presence context using Nearby

The Nearby APIs were created by Google last year for creating interaction pat-

terns with nearby objects [31]. For presence context detection, we have defined a re-

lationship in the Platys ontology as sitsIn. This relationship allows us to define that

a person has an office room assigned to them in an organization. The subject of this

relationship can be a “Supervisor”, “Subordinate” or “Colleague”. The object of the

relationship can be a “Location Room”. In order to obtain this information, we use

nearby messaging API from Google that allowed us to deploy a Physical Web of low

energy Bluetooth beacons. An example of the utility of such a web or physical infras-

tructure is the Carlton project [16] which was used to achieve privacy of the organization

while responding to natural language queries made about entities in the organization.

Using this technique we are able to generate the notion of “User is in front of her Boss’s

cabin”, which then allows us to execute policies that contain antecedents that represent

presence constraints.

3.3.4 Violation Metric

As discussed in Chapter 2, user driven policy capture processes have shown some

promise. However, they have also faced challenges of user indecision perhaps originat-

ing from a lack of understanding about an application’s behavior [51]. Deciding that

the system has indeed captured the access control preferences of an individual user thus

becomes a challenge. We present a violation detection driven process as a way to deter-

mine when the policy capture process is complete. Violations are actions performed by

29

apps (due to user action or otherwise) that are prohibited by current known policy. We

argue that when an such a violation is recorded in a specific context, our current policy

requires a modification in order to correctly represent user’s preferred restrictions.

For the violation detection process, MithrilAC detects application launches and

actions performed by the app. Since policy rules in our framework are written as a

function of context, the middleware is able to determine if an action performed by an

application in a Semantic user context, is in-fact allowed by a currently active policy. If

the action is not allowed, it marks the action as a potential policy violation and presents

to the user information about the event. If the user feedback is to block the action in

question in the future, then we have captured a “True Violation”(TV in short). On the

other hand, if the user wants to allow the action or wants to change the currently active

policy, a “False Violation”(FV in short) has been captured. When we capture a false

violation, the user is allowed to add/delete/generalize or specialize the conditions for a

policy rule. The hierarchical context ontology enables the generalization or specializa-

tion of rule conditions. Assuming true violations as true positives and false violations

as false positives, we can then compute the precision of the current policy as follows:

VM =
TV

FV + TV

.

We refer to policy precision as the “Violation Metric” (or VM metric), throughout

this work. Since we capture user feedback periodically, if at the end of a feedback

period the VM metric reaches a pre-defined threshold, we know that we have captured

30

most situations that the user truly intends to block. This means that it is safe to start

implementing our captured policy by executing the rules.

3.3.5 Dual operational mode

There are two operational modes for the rule capturing middleware; OBSERVER

and ENFORCER. OBSERVER mode corresponds to the phase where the system pas-

sively observes events on a mobile device. ENFORCER mode refers to the phase when

our middleware actively blocks operations on the device that are in violation of cap-

tured access control policy rules. The first module of our rule capturing middleware

is “Violation Recorder” module. This module records policy violations in our mobile

internal knowledge-base “MithilKB”. The internal KB is populated with policies from

our Mobipedia knowledge-base [63]. Captured policy modifications are also stored in

this internal KB. We denote the initial policy as P and our goal is to capture the modified

user policy of P’.

An important factor in the policy capture process is the initial policy. When the

MithrilAC middleware is installed on the mobile device, it downloads an initial default

from the application analytics back-end. We have run experiments with users and found

that if we use a default deny policy, we can capture policy rules using MITHRIL but it

also causes the system to present the user with a lot of feedback. This leads to the

user either not responding to them or responding to just a few of them. The state-of-

the-art for user rule capturing have established that it is possible to do so from scratch.

However, the range of variation of accuracy is pretty high, from 30% to 80%, as seen

31

in [2, 72]. Due to these reasons, we use policy rules that have been collected from

the crowd. A crowd-sourced policy would be less likely to cause wild user policy

fluctuations. It would also create much less feedback due to lower number of likely

violations occurring on the device. Although it is possible to use MITHRIL to capture

policy rules from scratch, our focus is on capturing the modified policy P’ starting

from an initial default policy P. We show that given proper information about events

happening on their mobile devices, in context, users can choose their data sharing rules

better. An example rule, is shown below in plain English along with it’s SWRL form.

Example 3.3.1. If user location is Work, in presence of Supervisor, and requester is a

Social Media app, requesting access for Camera, then deny access to camera

@pref ix p l a t y s :<h t t p s : / /www. e b i q u i t y . o rg / o n t o l o g i e s / p l a t y s / 1 . 0> .

p l a t y s : A p p (? r e q u e s t e r) ∧

p l a t y s : A p p C a t e g o r y (? r e q u e s t e r , “S o c i a l M e d i a ′′) ∧

p l a t y s : R e u q e s t (? r e q u e s t e r , “Camera′′)

p l a t y s : R e s o u r c e (“Camera′′)

p l a t y s : h a s C u r r e n t L o c a t i o n (? userB , “Work′′) ∧

p l a t y s : L o c a t i o n (“UMBC′′) ∧

p l a t y s : P r e s e n c e I n f o (? userA) ∧

p l a t y s : S u p e r v i s o r (? userA , ? userB) ∧

p l a t y s : a f f i l i a t e d W i t h (? userA , “UMBC′′) ∧

p l a t y s : a f f i l i a t e d W i t h (? userB , “UMBC′′) ∧

=⇒

p l a t y s : d e n y A c c e s s (“Camera′′)

Figure 2: SWRL representation for example rule

32

3.3.6 User Feedback Algorithm

The USER FEEDBACK ALGORITHM helps us capture modifications to the initial

policy. It uses the hierarchical contextual options encoded using the Platys ontology

to capture the afore-mentioned modified policy P’. In this algorithm, the user has the

option of accepting the rules or modifying rules by adding, deleting or changing con-

textual conditions in which a rule applies.

33

Algorithm 1 “User Feedback Algorithm” - Capture user-specific access control policies
1: appsOnMobileDevice=get apps on mobile device

2: for each appsOnMobileDevice do

3: Observe application launches.

4: Capture resource requested by app.

5: Collect snapshot of context.

6: Find out policy rules that deny resource access to application in current context.

7: Store potential violations in for deferred user feedback.

8: end for

9: for each recordedV iolations do

10: if User denoted as false violation then

11: Ask user to modify rule.

12: if User wants to add a condition to the rule then

13: Let user choose one of the conditions to add.

14: else if User wants to delete a condition from the rule then

15: Let user choose one of the conditions to delete.

16: else

17: if User wants to generalize a condition then

18: Provide user with a more generic condition as defined by the Platys ontology.

19: else

20: Provide user with a more specific condition as defined by the Platys ontology.

21: end if

22: end if

23: else

24: User denoted as a true violation.

25: end if

26: end for

The completion of the rule capture process is determined using the Violation Met-

ric we defined earlier in this chapter. Once the process is complete, the system shifts

to the ENFORCER. The policy precision or VM metric value can be pre-adjusted at a

threshold when the execution of policies will commence. Depending on the purpose of

the mobile device, as in the device is used in a BYOD scenario or as a personal device,

34

the threshold may be adjusted by an administrator or mobile user.

In the work done by [72], it was observed that using standard machine capturing

techniques like Random Forest Classifier [37], it was possible to improve rule accuracy.

However, they noted that such a system is not a good solution because the user would

lose control over what the rules would do or even understand them. We ascertain a

secondary issue where significant amounts of data would be required to perform such a

learning task and a learning system would require retraining and model creation, if the

policy preferences of the user changes over time. Given that we are using a violation

based technique, MITHRIL will be able to easily determine such a change and start

collecting them automatically.

As an alternate solution to machine learning techniques Sadeh et. al. [72], pro-

posed a user defined rule capturing system. They also carried out a user burden study

and observed that with a complex rule definition and higher number of rules, accuracy

of the policy was significantly higher than using a simple whitelist (define every entity

that is allowed to receive said data) approach. Therefore, we hypothesize that it is pos-

sible to increase the accuracy of the rules by making it easier for the user to understand

the rules.

3.3.7 Framework component: Heimdall back-end

MITHRIL framework also contains a back-end application analytics system that

collects mobile application metadata from the source market place. In our case, this is

the Google Play Store. We have collected metadata about 2.3 million apps and permis-

35

sion information about 934k apps that are available from the Google Play Store. We

incorporated permission data from the Playdrone project [83]. We then transformed our

collected data into RDF triples and stored it in our Mobipedia knowledge-base [63].

In this component, we also perform our application analytics by downloading the exe-

cutable file for an application and running it on an emulator and capturing behavioral

patterns using an automated script that simulate clicks performed by a user on a mobile

device. The results of our analysis are also stored in the Mobipedia knowledge-base to

be queried by systems that want to use knowledge of an application’s behavior.

System calls have been traditionally used to monitor programs in computing sys-

tems [48]. In MITHRIL, we use this theory to try and determine if system calls can

be used to distinguish between how an application “behaves” and its perceived/stated

purpose. There are mechanisms to capture system calls made by an application on a

mobile device. The goal of Heimdall, MITHRIL’s application analytics system, is to

classify an application into it’s behavioral class and generate an initial set of policy

rules using crowd-sourced policy rules. We generate policies based on majority voting

for a specific permission request in a given behavioral class. There are major challenges

involved in behavioral classification. We discuss them in the next chapter, but it is im-

perative to state that even if an application’s behavioral class cannot be determined, we

have collected application category data from the Google Play Store for almost 80% of

the store. We use the Play Store category to generate the initial set of policies for an

app.

Why is behavioral classification useful in creating an initial set of policies?

36

Let’s consider the case of the “Brightest Flashlight” application. This application

was sanctioned [47] in 2013 for collecting user locations and surreptitiously upload-

ing the same to an advertising network. In this case, the behavior class of “flashlight”

tells us that this application should not have access to any other permission than the

camera to turn the flash on or off. However, this application did more than such an

expected behavior and collected location information of users. Determining whether

an application’s behavior was indeed legitimate is often complicated and requires in-

depth analysis of application behavioral patterns and matching them to expected be-

havioral patterns. However, if it were possible to incorporate the human knowledge of

“location access” being inconsistent with an application’s functionality then we could

possible prevent leakage of user privacy. That is why we use policies obtained from

the crowd and use system call analysis because in general a flashlight app, would only

make system calls related to the camera API. The above application however, would

make additional system calls related to GPS and Networking.

In the next chapter, we discuss violation driven user policy capture.

37

Chapter 4

POLICY CAPTURE MIDDLEWARE

In this chapter, we describe the functionality of the mobile middleware. The key

research question we are trying to answer through this system is as follows:

RQ1: Given an initial policy P and user goal policy P’, can violation metric be used to

determine the completion of the capture process?

4.1 Approach to policy capture

Our policy capture approach involves the use of a middleware, MithrilAC, shown

in Figure 4. MithrilAC contains four main components: a policy enforcement module, a

policy decision module, a policy store module and a user policy control module. Mithri-

lAC sits between application layer and framework layer. It takes as input a request for

data or component access. It’s output contains requested data or access to a component

or an exception stating that data or component is unavailable. To represent access con-

straints, MithrilAC uses an attribute-based access control (ABAC) model [40], where

the attributes represent user context, requested resource and requester meta-data. We

use ABAC as it provides us the flexibility of having any number of attributes to be added

to our rule.

MithrilAC has two operating modes: OBSERVER and ENFORCER. In observer

mode the system does not enforce access control policies, but simply notes all violations

38

of current policy rules. In this mode, feedback requested from user periodically, on

the recorded violations, in order to capture their ‘preferred policy’. The frequency for

feedback is a system setting that is adjustable by user or system admin. After an initial

round of policy capture and user interaction, MithrilAC moves to ENFORCER mode, in

which it enforces current applicable policy rules. The transition between the two modes

is determined using a predefined, but adjustable, threshold for the VM metric.

Definition 5. A policy rule VIOLATION, is recorded when a rule defines an access

restrictions for an application and a behavior is observed that tries to defy such a re-

striction.

Le’s assume our rule is “Do not share camera resource with social media ap-

plications at work”. A violation is recorded if for some reason the camera is accessed

by a social media application at work. During the feedback cycle, this violation will

be marked as a TRUE violation (hereafter denoted as TV), if the user agrees that this

behavior is indeed unexpected. For example, if the camera was accessed by Instagram,

a social media app, when at work and the user did not expect this observed behavior,

then we have a true violation captured. A violation is considered to be a FALSE viola-

tion (hereafter denotes as FV), if the user expected observed behavior. For example, the

camera might have been accessed at work by Instagram, but the user initiated it while

at lunch in the cafeteria. Using the TV and FV frequencies we compute our Violation

Metric (VM). Our VM metric, computed as follows, helps us determine if MithrilAC is

ready to transition from OBSERVER mode to ENFORCER mode:

39

VM =
TV

FV + TV

This VM metric computes the precision of the known policy, as in the ratio of

true positives and sum of true and false positives. Here, we are defining true violations

as true positives, which signifies that the default policy P and the user’s preferred policy

P’ were the same and NO modifications to the original policy will be required. On the

other hand, false violations or false positives are situations when the default policy P

and the user’s preferred policy P’ differ and we need to capture change in current policy.

A high value of the VM metric signifies we are closer to a user’s “personalized” policy.

4.1.1 Assumptions

Throughout our work, we use the following example to explain internal working

mechanisms of MithrilAC and the example does not denote the limitations of the sys-

tem, rather it is used for clarity. Our example uses a policy applicable users a “graduate

student.” We assume that our users work for a confidential research project and protect-

ing their data is of critical importance. We assume that they start from an initial policy

P, that they are allowed to modify to better protect their data. We use Android mobile

devices for our system implementation as Android is open source thus allowing us to

modify system behavior and execute policies to block access to resources on the device.

40

4.1.2 Policy Store

The policy store module in MithrilAC has a knowledge base containing a cur-

rently applicable policy for the mobile device. Research conducted by [2, 72, 52, 54]

have established that it is possible to fairly accurately create privacy profiles applica-

ble to user categories on mobile devices. The MITHRIL framework intends to extend

this domain by creating a methodology to capture user specific policy rules. We use an

initial policy, as a starting point for our system.

The storage module takes as input a requester application’s information and in-

formation about the requested resource and searches the policy knowledge base for the

applicable policy rules and returns the same to the policy decision module. The sec-

ond task that the policy storage handles is updating a policy rule as requested by the

user policy control module. Now, let us take a look at how rules are represented in

MithrilAC.

Rule Representation: Rules, in our system, are expressed using SWRL [39]. A

more abstract representation may be considered as a triple (R, C, Q) which contains: R,

that represents the requester’s context, C is user’s context and Q is the query received by

the system. The consequent of a rule defines the action to be taken. We define some use

cases in detail in the following section, but for now we present an example rule where,

we have an application that belongs to the social media category. Let us take a look

at a rule from our policy called GRADSTUDENTPOLICY for graduate students, called

SOCIALMEDIACAMERAACCESSRULE. The rule states that, while the student is in a

university building, social media apps are not allowed to access camera on her mobile

41

device. The rule is shown Figure 1.

@pref ix p l a t y s :<h t t p s : / /www. e b i q u i t y . o rg / o n t o l o g i e s / p l a t y s / 1 . 0> .

p l a t y s : R e s o u r c e R e q u e s t e d (? r , “Camera′′) ∧

p l a t y s : r e q u e s t i n g A p p (? app) ∧

p l a t y s : h a s A p p T y p e (? app , “S o c i a l M e d i a ′′)∧

p l a t y s : U s e r (? u) ∧

p l a t y s : u s e r L o c a t i o n (? u , ? l) ∧

p l a t y s : h a s L o c a t i o n T y p e (? l , “U n i v e r s i t y Lab′′)

=⇒

p l a t y s : d e n y A c c e s s (“Camera′′)

Figure 1: Simple rule for controlling social media camera access

Example of a higher granularity rule can be seen in Figure 2, which has more

conditions incorporated. In plain terms, we are now stating that instead of just being

applicable in a university building, the device should not “Do not allow camera access

to “Social Media” apps when the time of day is between 9AM and 5PM and it is a

weekday and the user is at university lab location in presence of her Advisor and has a

meeting scheduled with her Advisor”.

42

@pref ix p l a t y s :<h t t p s : / /www. e b i q u i t y . o rg / o n t o l o g i e s / p l a t y s / 1 . 0> .

p l a t y s : R e s o u r c e R e q u e s t e d (? r , “Camera′′) ∧

p l a t y s : r e q u e s t i n g A p p (? app) ∧

p l a t y s : h a s A p p T y p e (? app , “S o c i a l M e d i a ′′)∧

p l a t y s : U s e r (? u) ∧

p l a t y s : u s e r T i m e (? u , ? t) ∧

p l a t y s : t i m e A f t e r (? t , “0900′′) ∧

p l a t y s : t i m e B e f o r e (? t , “1700′′) ∧

p l a ty s :u se rDayOfWeek (? u , ? d) ∧

p l a t y s : h a s D a y T y p e (? d , “Weekday′′) ∧

p l a t y s : u s e r A c t i v i t y (? a) ∧

p l a t y s : h a s A c t i v i t y T y p e (? a , “Advi so r\ Meet ing ′′) ∧

p l a t y s : u s e r p r e s e n c e I n f o (? p) ∧

p l a t y s : h a s P r e s e n c e T y p e (? p , “Advi so r ′′)∧

p l a t y s : u s e r L o c a t i o n (? u , ? l) ∧

p l a t y s : h a s L o c a t i o n T y p e (? l , “U n i v e r s i t y Lab′′)

=⇒

p l a t y s : d e n y A c c e s s (“Camera′′)

Figure 2: Rule with higher granularity, for controlling social media camera access

4.1.3 Policy Decision

The policy decision module receives as input, a request meta-data from policy

enforcement module. The current context is obtained using a context synthesizer sub-

module. The context synthesizer keeps user context facts updated using an OWL-DL

reasoner and a context ontology to infer high-level and semantically rich context. A

similar technique for context inference from low level sensor information was explored

in [35]. We use the Platys ontology [41] to semantically represent user context. We use

43

classes defined in the Platys ontology to define hierarchical context models that enables

us to generalize or specialize over user context. An example of how this is used is

shown in section 4.3.

We use a knowledge-base on the phone that stores facts about apps including

application categories. The facts are extracted from various sources like the Android

Marketplace [28] and the DBpedia ontology [58]. The facts include meta-data like ap-

plication manufacturer, download count, maturity rating, user rating, developer country

of origin, number and category of permissions requested by the application etc. The

facts about user context and apps are stored in form of RDF triples, which helps us

query the knowledge-base for properties like application types or location types. This

information enables the inference mechanism as the rules are stated in terms of the

properties of apps and user context.

The final piece of information needed to make a decision are the rules for the cur-

rent request meta-data, which are provided by the policy storage module. A requester,

resource tuple can have multiple policy rules applicable based on contextual conditions.

Once rules are obtained, using context and application facts from knowledge-base a spe-

cific rule applicable is inferred by an OWL-DL reasoner. The consequent of a chosen

rule is the applicable action. If action is deny, then a data request is marked as a possible

violation of current policy rules.

In observer mode, the violation meta-data, which consists of a request meta-data

along-with an applicable rule and user context is forwarded to User Policy Control mod-

ule and no response is sent to policy enforcement module. In enforcer mode however,

44

action inferred by reasoner is simply returned to policy enforcement module to manage

access to the requested resource.

4.1.4 Policy Enforcement

For policy enforcement, MithrilAC has to be the system admin. We achieve the

goal of inserting ourselves in between applications and Android framework and acting

as an admin by using a custom ROM. Our solution uses ideas from the Privacy Guard

project [38]. The policy enforcement module receives as input, data requests from apps

and serves them with data as dictated by the “action” returned by policy decision mod-

ule. In observer mode, the policy enforcement module does enforce access control on

the mobile device. In this mode, it simply passes data request tuples consisting of a

requested component name or type of data and a requester name (henceforth referred

to as: request meta-data) to the policy decision module. In enforcer mode, it passes on

a request meta-data but expects the policy decision module to provide an “action”. If

the action is to allow access, it simply makes a request to the Android framework for

the data and returns the same to the requesting app. If action is to deny access, it pro-

hibits the request from going any further. Implementation details of policy enforcement

module can be found in Chapter 6.

4.1.5 User Policy Control

Finally, we take a look at the user policy control module. This module is of key

importance in this paper and will be discussed in detail in Section 4.3, but we provide

45

a brief overview here. As we have explained before, MithrilAC starts with an initial

policy for a particular user category as defined by the occupation chosen by the user

at installation time for MithrilAC. We collect user’s identity and some basic profile

information. This information includes user’s identity, work location, home location,

occupation category defined by our ontology etc. Using the policy control module, we

capture a user’s preferred policy. We use an ontology to define contextual information

using a hierarchical context model. We use Location and Activity generalization as was

shown in our group’s previous work [89] and discussed in Section 4.3.

Figure 3: Transitions shown for prototype app

4.2 Use Case Scenarios

The use cases that we will discuss represent the possible scenarios we envision in

our policy violation and user feedback process. We used CM13, a fork of Android 6.0.1

(Marshmallow) for creating the application that allows us to capture user feedback.

46

Before Android Marshmallow, we had a permission model of install-time permission

acquisition for data access allowed to an app. In Marshmallow, we saw the launch

of a run-time permission acquisition model. Point to note here is that we now have

Android 7.0.1 (Nougat) out in the wild but from an access control model perspective,

nothing has changed, so using CM13 is okay for now. However, we still do not have

context-sensitive, fine-grained and dynamic access control in Android. In our running

example, we have an initial policy for graduate students, i.e., GRADSTUDENTPOLICY

that contains a few rules like the following:

• SOCIALMEDIACAMERAACCESSRULE: Do not share camera resource with so-

cial media applications at work

• SOCIALMEDIALOCATIONACCESSRULE: Do not share location with social me-

dia applications at work

• TOOLAPPSNETWORKACCESSRULE: Do not share network information with

Tool apps

• PRODCUTIVTYAPPSIDENTITYACCESSRULE: Do not share identity with pro-

ductivity apps

In our example scenario, we will use the SOCIALMEDIACAMERAACCESSRULE for

explanations. We are assuming that the user is a graduate student at UMBC’s Computer

Science department. In the OBSERVER mode, we mentioned earlier, MithrilAC captures

violations of the current applicable policy. Now imagine that the user takes a picture

at the university cafeteria during lunch hours and uploads to Instagram. Our system is

47

able to use the Platys ontology to determine that university cafeteria is “part of” the

university and therefore the user is at ‘Work’. Using our application knowledge-base,

we are also able to determine that Instagram is a Social Media app. Since we have a

rule that states that social media applications are not allowed location access at ‘Work’

we detect this as a violation of applicable policy. In the next user feedback cycle, we

present all such “violations” of the initial policy to the user. At this juncture, we study

the five use case scenarios that can happen in our system.

Figure 4: MithrilAC middleware architecture

48

Figure 5: Rule violation meta-data displayed to user

4.2.1 Use case - True Violations:

“Rule is good, keep it”– User is presented with a violation and the user determines

that this was a TRUE violation. As stated before, this type of violation signifies that

user did not expect observed behavior and the policy requires no change. In this case,

49

the response we capture is used as a confirmation of the rule as being true. We will

not ask the user about this rule again unless some sort of system-wide reset happens.

In this scenario, we will enforce this rule as-is in ENFORCER mode. This use case

signifies MithrilAC will now make “Do not share camera resource with social media

applications at work” a quasi-permanent policy. By quasi-permanent we mean that the

policy is not going to change unless there is an explicit system reset performed to go

back to the initial policy applicable to the user category. This could happen if some

static user profile information is changed that was collected at the install time.

4.2.2 Use case - False Violations:

The rest of the use cases state situations when policy modifications are required,

but we still have some variations in how modifications are carried out. The rest of the

use cases explain these situations.

USE CASE FV-1: “Rule is not required, delete it”– User is presented with a

violation and the user determines that this was a FALSE violation requiring deletion.

This scenario indicates that the user expected this behavior and thus the policy rule

that causes current observation to be determined as a violation is no longer applicable.

Similar to the above use case we will not ask the user about this rule again unless some

sort of system wide reset happens to the original default policy. In this scenario, we will

delete this particular rule and not enforce it in ENFORCER mode.

USE CASE FV-2: “Rule requires antecedent generalization, modify it”– User is

presented with a violation and the user determines the policy rule to be FALSE viola-

50

tion, but an imprecise rule. That is, although the observed behavior might have been

expected, the current rule does not clearly define the user’s preferred policy. As a result,

observed behavior cannot be clearly stated as a violation of user’s policy. An example

of such a scenario would be, our rule stated was “Do not share camera resource with

social media applications at work”. Observed behavior was Instagram, a social media

app, was used at University Cafeteria. The cafeteria is inferred as a work location as it

is part of the University. However, the user expects to use their mobile to take pictures

during lunch. Therefore, the rule requires more conditions like a temporal restriction

or a more precise location restriction or an activity restriction. Such restrictions would

mean modification would be required for the rule antecedents or new antecedents would

have to be added to the rule. As such, we can have four different outcomes. Since the

user determines the rule as imprecise, they are allowed to modify the rule. Modifi-

cations could include changing a specific contextual antecedent into a more generic

contextual antecedent. See the application design diagram in Figure 7. Our example

rule stated that “Do not share camera resource with social media applications at work”.

The ‘at work’ part of the rule for a graduate student profile is used to infer that a loca-

tion related antecedent applies and University Campus is a ‘work’ location. Now, user

may choose to make location antecedent into a more generic antecedent by going up the

relationship chain defined in our ontology. An example of such generalization would

be that user wants to apply the camera restriction at city level. New generic rule now

applies as “Do not share camera resource with social media applications in Baltimore

county”.

51

USE CASE FV-3: “Rule requires antecedent specialization, modify it”– User

could also choose to make the rule more specific. For example they could state that

the rule applies only at the ‘University Lab’. The reasoner will be able to infer that a

modified rule needs to be enforced at a more specific location than previously captured.

In pretty much the same way as the above use case, user is allowed to choose a more

specific location antecedent by parsing down the relationship chain in our ontology.

The modified policy thus becomes “Do not share camera resource with social media

applications at University Lab”.

USE CASE FV-4: “Rule has too many or is missing conditions, delete or add

them”– The most interesting use case is that of adding or deleting antecedents to the

rule. As we saw in Figure 2. We could have a situation where the rule only applies if

it is official work hours or in presence of certain other people. In such a scenario, our

system allows the user to add or even remove contextual and other antecedents to the

rule. Thus allowing us to capture more fine-grained policies than previously possible.

Our example policy for social media camera resource access thus becomes “Do not

share camera resource with social media applications at University Lab between 9AM

and 5PM on a weekday in presence of Advisor”. Such a rule can be captured by user

feedback process only, thus justifying the need for our system.

USE CASE FV-5: “New rule is required”– An extension of the above use case

would be that user needs a new rule altogether. This option is also available to user

through our system. The user may simply choose to start an empty rule and add new

antecedents and state a consequent that captures some aspect of the user’s policy that

52

was not covered by the initial policy. This flexibility allows our system to be capable

of defining policies with all possible combinations of our system’s known antecedents.

As a result, with proper feedback we will always be able to reach the user’s preferred

policy.

4.3 System Implementation

Since MithrilAC uses a feedback mechanism to iteratively modify policy rules,

we need to take a look at the rule capture interface and process. We have implemented a

prototype system that has four modules. The first module detects application launch and

API call behavior. This is to determine when an app, for example, requests a location

update. The second module gathers contextual information. The third module intercepts

the calls made by an application and either returns dummy responses or no response at

all. Since Android Marshmallow, no data return is an acceptable behavior and we take

advantage of this feature. Thus achieving data privacy and security with low system

instability.

The user policy control is the final part of our system implementation. Figure 5

shows the violation meta-data as seen by the user and Figure 7 shows the policy mod-

ification options that a user is provided during the process of capturing their preferred

policy. We have also added a set of screenshots from our prototype application showing

the steps of rule capture (see Figure 3). A feedback iteration starts with a list of viola-

tions, obtained from the policy decision module, being presented to a user. When the

user chooses to look at a specific rule violation from a list, she is presented with a spe-

53

cific rule’s violation meta-data, which includes actual rule statement and a list of facts

about an application that is violating a rule. User then has the option of further explor-

ing the violation by clicking on “Display Policy Rule Conditions” button for exploring

context antecedents for said rule.

The frequency of feedback is a admin or user setting. During each feedback

iteration, the user is shown a list of all potential violations on their mobile device. As

explained in the previous section, user has two options at this point. She can choose

to state a violation as a true violation or as a false violation. Our ontology and user

context facts allows us to generalize or specialize over user’s context. This provides a

convenient way for user to modify policy conditions, in order to define changes in the

current rules. We use two types of generalization: by location and by activity.

Location generalization in our ontology is achieved by using the transitive prop-

erties “is a” and “part of”. The “is a” property defines location classes as sub class of

other location classes, for example a Home Location could indicate the home coordi-

nates of a user and it is a type of Location. The “part of” property on the other hand

represents the concept of one location being inside of another. Thus we have classes

like Country, State, City, Organization, Building, Room, Point where each lower level

class is partOf a higher level Location class. Using these classes and the part of prop-

erty we define a hierarchical location context model which then allows us to represent

axioms like “Room is a part of Building”. We use an OWL-DL reasoner [88] to infer

any existing relationships between instances of these classes.

Every activity in our ontology is the sub class of the Activity class. It is possible

54

to obtain user activities, using Google APIs, which are related to a device’s motion.

For example, if a user is walking, running or in a car or not. On the other hand, we

can obtain user activity information from User’s calendar too. In our ontology, we have

classes defined like Professional Activity, Meeting, Lab Meeting, Professor Meeting,

Project Meeting, etc. We can see this class hierarchy from the ontology in Figure 6.

This allows us to define a hierarchical activity generalization model via sub class re-

lationships between generic and specific activities. Imagine a scenario where an ap-

plication is collecting microphone data and we want to protect private lab information.

We can then define policies for Lab Meeting or we can define activity context based

policies for any “Meeting”, if we want to prevent recordings at all of our meetings.

55

Figure 6: Snapshot of Platys Ontology defining context hierarchy

A sample view of hierarchical choices can be seen in Figure 7. Although we have

discussed six use case scenarios that might occur during a policy capture process based

on violation information presented to users, it is possible to have more use cases which

might be beyond even the violation capture process. One such scenarios would be when

56

a policy rule’s consequent is modified. This could either negate our initial rule or may

add conditions on what data could be shared. Such a condition might include data

obfuscation techniques. In this case, user will have to add antecedents that define those

limitations. For example, the user might want to share a fake Location, an inaccurate

location or state that location is unavailable.

Clearly, our policy rules are significantly more complicated as opposed to a sim-

ple permission-based model that Android currently follows. The dynamic nature al-

lowed by the variable actions and the granularity provided by the contextual antecedents

are contributing factors to this complexity. However, it also gives more control to the

user over her data.

57

Figure 7: Ontology-driven hierarchical options for rule modification

Towards automatic rule generation: The use of a hierarchical context model via

an ontology allows us to infer subsumption relationship between a generic and a specific

58

rule. As a result, we can use an ontology to infer decisions for contextual situations, for

which no “specific” rules exist. For example, if there is a rule that states “Do not allow

access to camera at work”. That means any location that can be determined to be a work

location can be assumed to be a place where camera access is not allowed. However,

once the user modifies this rule to a more specific rule stating “Do not allow access

to camera in university building” what can we assume about the locations that are still

work and were part of the rule but are not anymore? Can we generate more policies that

state “Do not allow camera access in university parking lot”? We can discard the rule

that states access denied at cafeteria as we observed the user’s response to that specific

violation but what about the other conditions? Given that our ontology defines the state

of the world, we can possibly generate all such conditional rules using our hierarchical

context model. In a similar way, if we observe, as per our contextual model, rules being

added for every sub class or context piece at a particular hierarchy then we can infer

a more generic antecedent for the specific context piece and reduce the rule set to a

smaller set. To the extent of what context we can capture in this hierarchical manner,

we may generate rules for a user automatically. Given our system design and an initial

policy for a user category, we can carry out the reduction and expansion of policies into

a bigger and smaller set of rules. However, such reduction or expansion is beyond the

scope of the current paper.

In the next chapter, we talk about application analytics back-end that helps pro-

duce an initial default policy for MITHRIL.

59

Chapter 5

APPLICATION ANALYTICS BACK-END

In this chapter, we describe the functionality of the application analytics back-

end. The key research question we are trying to answer through this system is as fol-

lows:

RQ2: Can system calls be used as features to classify mobile applications into their

behavioral classes?

5.1 Approach to Mobile Application Analytics

Our approach to Mobile Application Analytics involves the use of a machine

learning pipeline to carry out an application behavior classification task. We call this

pipeline and the collective software and code we built, the Heimdall system (see Fig-

ure 1). We have five main components in our system: Download module, Annotation

module, System call module, Feature generation module and Classification module.

The input to our system were search terms for testing application categories. The ex-

pected output of the system was the behavioral class for an application.

60

Figure 1: Design of system built for studying application behavior

A system call (or syscall) may be defined as the fundamental interface between an

application and the Linux kernel [46]. The system calls that are part of Android’s kernel

distributions have been defined in the class android.system.Os [32]. At the lowest level

of the operating system, an app’s functionality boils down to the tasks and services it

requests the kernel to perform, through system calls. As a result, an application could

be monitored by observing the patterns in the system calls it executes.

61

What does a behavioral class represent? A simple representation of behavioral

classes maybe considered as the application category information from Google Play

Store. More appropriate category information would be the ones we determined during

our behavioral pattern annotation. For example, we found a number of mobile appli-

cations that were PDF readers. In order to carry out the annotation, we downloaded

all the mobile applications that we could find for this particular behavior category, i.e.

PDF readers, on a mobile device. We used the mobile applications and read the mo-

bile application’s description on Google Play Store [28] and manually determined the

app’s primary usage category. Google categorized most of these mobile applications

into either Productivity, Books & Reference or Education categories. Such a discrep-

ancy indicates that determination of a mobile application’s category was a complicated

task in reality.

The strace utility enables diagnostics, debugging and instructional user-space

monitoring and modifying interactions between processes and the Linux kernel, which

include system calls, signal deliveries, and changes of process state. We have used

this utility for studying and capturing system calls in form of interactions between user

space mobile applications and kernel space programs.

Practical limitations necessitated use of an emulator for experiments running sim-

ulation of user’s actions on a mobile device. For that purpose, we used the “UI/Appli-

cation Exerciser Monkey” [33] (hereafter called Monkey tool). The Monkey tool is a

command-line utility that can run on a emulator or mobile device and sends a pseudo-

random stream of user events into the system. This utility allowed us to write programs

62

that controlled the Android device or emulator to install a list of mobile applications

that were to be tested and exercise all possible UI behavior that a user could trigger.

Once the system calls were captured, we used standard text processing techniques

and information retrieval measures like simple term-frequency and tf-idf to generate

feature vectors for our classifiers. These feature vectors were then used to run a slew

of classifiers using the weka tool [36]. We have presented the classification results

in Section 4.2.

5.2 Machine Learning pipeline setup

Our experiments were executed using an emulated Nexus 6, running Android

6.0.1 (Lollipop build December 2015) with Intel’s hardware accelerated execution man-

ager, 1.5GB RAM and 16GB internal storage. The host machine operating system was

Ubuntu 14.04, Intel Core-i7 3.4GHz processor, 32GB RAM and 2TB storage space

for downloaded apps. The machine learning pipeline was made up of five modules

described next.

5.2.1 Download module

There are several mechanisms for downloading Android mobile applications from

the Google Play Store [28]. We used open source code 1 with our system specific mod-

ifications for this task. Although our system could be used to study any kind of applica-

tion and its functional behavioral pattern, for the sake of simplification of experimental

1CMUChimps Lab: https://github.com/CMUChimpsLab/googleplay-api

63

evaluation, we started our system with 10 specific search criteria on the Google Play

Store [28]. A search on the Play Store [28] could be performed using a simple html

GET request with the search term as a url parameter 2. The task of the download mod-

ule was used to retrieve both metadata about mobile applications (i.e. application name,

developer name, descriptions, Google Play category etc.) and Android executable APK

files, to run experiments for mobile applications found through the search results.

5.2.2 Annotation module

The annotation module included an interface to read the application description

and other meta information and an emulator to install the application and observe its

behavior. Based on their observations, annotators would ascertain a specific “behavior

class” and assign it to the application. We ran our study on 534 mobile applications from

10 specific keyword patterns. The key word patterns we used include: “alarm clock”,

“file explorer”, “to do list”, “scientific calculator”, “battery saver”, “pdf reader”, “video

playback”, “lunar calendar”, “drink recipes”, “wifi analyzer”. We downloaded 1560

mobile applications found in our search. However, a significant number of these apps,

were unusable due to emulator issues (application crashes and incompatibility issues)

or because they required some sort of user interaction that could not be automated (for

example, profile creation). As a result, we annotated 534 apps.

2URL Prefix: https://play.google.com/store/search?q=; Search terms: pdf
readers; URL Suffix: &c=apps&hl=en

64

Annotated behavior class # apps %age

Alarm clock 128 23.97

Battery saver 93 17.42

Drink recipes 15 2.81

File explorer 72 13.48

Lunar calendar 12 2.25

Pdf reader 22 4.12

Scientific calculator 61 11.42

To do list 102 19.10

Video playback 5 0.94

Wifi analyzer 24 4.49

Table 5.1: Annotated application categories

65

Google Play category # apps %age

Tools 265 49.63

Productivity 133 24.91

Lifestyle 48 8.99

Education 14 2.62

Personalization 13 2.43

Books & reference 12 2.25

Music & audio 8 1.50

Entertainment 7 1.31

Communication 6 1.12

Health & fitness 6 1.12

Business 5 0.94

Media & video 4 0.75

Medical 3 0.56

Adventure 2 0.37

Social 2 0.37

Travel & local 2 0.37

Arcade 1 0.19

Libraries & demo 1 0.19

News & magazines 1 0.19

Shopping 1 0.19

Table 5.2: Google Play Category

66

Table 5.1 shows the distribution of mobile applications annotated according to

their behavior classes. It is interesting to note that for these 534 apps, Google puts them

mostly into Tools and Productivity category as shown in Table 5.2. We can conclude

from this observation that not only does Google NOT maintain a standardized approach

to ensure that a developer explain what their application does, they categorize mobile

applications in a very generic fashion. Granular behavior categorization thus remains a

motivating challenge for further research.

5.2.3 System call module

In the system call module, we installed downloaded mobile applications on an

Android emulator. We then used the Monkey tool [33] to simulate a real human using

an application and all its functionality. We used the monkey tool to adjust the percentage

of “system” key events (like Home, Back, Start Call, End Call, or Volume controls) and

maximize coverage of all activities within the app’s package. We varied the number

of clicks through Monkey between 1000 and 10000 to maximize coverage of “visible”

functionality of an application. Throttling was the final option that we used to ensure

stability of execution. The final option made sure that we had fewer application crashes.

strace was used to capture system calls generated by the process of an application.

We used the Android Debug Bridge to control the emulator and extract the results of

our experiments.

67

2966 r e a d (3 7 , ‘ ‘ Android Emula to r OpenGL ES Trans ’ ’ . . . , 65) = 65
2966 r e a d (3 7 , ‘ ‘A\0\0\0 ’ ’ , 4) = 4
2966 w r i t e (3 7 , ‘ ‘\23 ’ \0\0\24\0\0\0\0\37\0\0\0\0\0\0\0 ’ ’ , 20) = 20
2966 r e a d (3 7 , ‘ ‘\34\0\0\0 ’ ’ , 4) = 4
2966 r e a d (3 7 , ‘ ‘\344\377\377\377 ’ ’ , 4) = 4
2966 w r i t e (3 7 , ‘ ‘\23 ’ \0\0000\0\0\0\37\0\0\34\0\0 ’ ’ . . . , 48) = 48
2966 r e a d (3 7 , ‘ ‘ Google (NVIDIA C o r p o r a t i o n) \0 ’ ’ , 28) = 28
2966 r e a d (3 7 , ‘ ‘\347\377\377\377 ’ ’ , 4) = 4
2966 r e a d (3 7 , ‘ ‘\31\0\0\0 ’ ’ , 4) = 4
2966 w r i t e (3 7 , ‘ ‘\23 ’\0\0−\0\214\213\0\0\31\0\0 ’ ’ . . . , 45) = 45
2966 r e a d (3 7 , ‘ ‘OpenGL ES GLSL ES 1 . 0 . 1 7\0 ’ ’ , 25) = 25
2966 w r i t e (3 7 , ‘ ‘\23 ’ \0\0\24\0\0\0\214\213\0\0\0\0\0 ’ ’ , 20) = 20

Figure 2: System calls

5.2.4 Feature generation module

The output of the previous module was a series of system calls made by the appli-

cation. An excerpt of strace output for an application from the “File Explorer” category

is shown below:

The first part of each line in strace output was the app’s process id. After

that we have the system call followed by parameters for that particular system call.

In our study, we collected frequency of system calls made by an application in order to

generate features. “Term frequency–inverse document frequency” (tf–idf) [74] is one of

the most commonly used term weighting schemes in information retrieval. We compute

tf–idf weight vectors using system calls as terms and mobile applications as documents:

tfidf(t, d,D) = tf(t, d)× idf(t,D)

where, Term Frequency (TF) was computed as:

tf(t, d) = 1 + logft,d

68

and Inverse Document Frequency (IDF) was computed as:

idf(t,D) = log
N

nt

⇒ idf(t,D) = log
N

|{dεD : tεd}|

Here, ‘N’ represents the total number of documents in the document set ‘D’. ‘t’

represents a term in a specific document ‘d’. ‘f’ represents the frequency of a term

‘t’ in a document ‘d’. Finally ‘n’ represents number of documents ‘d’ with term ‘t’

in document set ‘D’. We generated two sets of feature vectors–one hot vectors and tf–

idf weight vectors. We ran the classifiers to train and test on two sets of ground truth

labels–annotated class labels and Google Play categories as class labels.

5.2.5 Classification module

The classification module consisted of scripts to use the Weka tool [36] and run

Support Vector Machine(SVM), Naive Bayes(NB), Decision tree(J48) and Multilayer

Perceptron (MLP) classifiers on our generated feature vectors. For each of these clas-

sifiers we used 10 fold cross validation technique and recorded the achieved average

F1–measure [82]. F1–measure is the harmonic mean of precision and recall and has a

range of [0,1]. For SVM we experimented with RBF and Polynomial kernels. Detailed

results are in Chapter 8.

5.2.6 N-grams of system calls

When an application performs an action at the Java API level it can result in a

sequence of multiple system calls due to abstractions at the API level. These sequences

69

may have structural patterns the way human languages do. For example, in English,

the letter ’u’ is commonly preceded by the letter ’q,’. Since n-grams work by capturing

this structure, certain combinations of system calls can perhaps be captured by them

and may be representative of the app’s behavior class. In order to test this theory, we

used our generated system call sequences and generated n-grams from them and then

performed the behavior classification task again. The results of the system call n-gram

feature based classification are presented in Chapter 8.

5.3 Malware detection

Malware detection is a well researched domain [7, 19, 90]. One of the causes

of focusing on behavior classification, in our work was that the malware samples that

are available through various sources today, like the Malware Genome Project [90] and

VirusShare [70] are quite old. A lack of good sample data should make it difficult

for detecting malwares and accuracy of such a task should ideally be low. However,

since benign application samples are readily available from official application stores,

we wanted to determine if classifiers perform well by capturing the latent temporal

distinction in the data sample. This is significant because although the state-of-the-art

in malware detection [87] has achieved 96.76% accuracy, due to the quirks of the data

set, we argue, that these malware detection projects are capturing features that are in-

fact classifying mobile applications that use Android APIs from different time periods.

Permission–based analytics have shown some promise in malware detection [7,

12]. However, our primary goal was not to perform malware detection, but rather using

70

feature importance to determine the permissions that are significant in detecting a mal-

ware. We use these permissions to then compute the similarity between known malware

applications and applications we encountered on the Google Play Store.

5.4 About Mobipedia

In the Mobipedia project [64], we created an ontology Figure 3 which models

concepts related to mobile applications. The project parsed data from various on-

line sources to consolidate knowledge about mobile applications into the Mobipedia

Knowledge-Base. Mobipedia’s ontology [64] models information related to mobile ap-

plications independent of the mobile operating system. We considered using existing

ontologies such as Dublin Core Metadata Initiative (DCMI) and Description of a Project

(DOAP) which are used to describe web resources and software projects respectively.

But as neither of them is focused on mobile development, the concepts and properties

in those vocabularies do not match the requirements for modeling of mobile applica-

tions completely. Nevertheless, we linked some of the terms in DCMI ontology with

Mobipedia terms using owl:subClassOf. For example, “DCMI:Creator” [85] was

linked to “Mobipedia:Developer”.

Figure 3 shows an excerpt of the ontology including the most important classes

and the object properties that relate them 3. In addition to the classes we had defined in

the Mobipedia project, we added a class to define application behavior into the Mobi-

pedia ontology. We named this class mobipedia:Behavior Category.

3The figure has been generated using the Graffoo specification [21].

71

Figure 3: Excerpt of the Mobipedia ontology.

5.4.1 Adding behavior knowledge into Mobipedia

In this dissertation, we used static and dynamic analysis of mobile applications to

perform a multi-class classification task that determines an application’s behavior class.

Since we had already created the Mobipedia KB, we incorporated an additional class

defining a mobile application’s behavior class. We enrich the KB with the results of our

behavior classification task.

5.4.2 Accessing Mobipedia

Access to Mobipedia is royalty-free under the terms of GNU free documenta-

tion license. Similarly to DBpedia [3], we provide three mechanism of accessing the

Mobipedia dataset:

72

Using Linked Data: It uses HTTP protocol to retrieve entity information which

contains all the triples associated with the entity. This can be accessed using web

browsers, Semantic Web browsers, and crawlers.

Using SPARQL Endpoint: We have also setup a SPARQL endpoint at https:

//mobipedia.science/sparql which can be used for querying the Mobipedia

dataset.

Using RDF Dumps: Larger versions of the Mobipedia dataset in the form of seri-

alized triples can be downloaded from the Mobipedia website as well. These dumps can

be used as annotated datasets in research or for the purpose of running various analyses

locally.

73

https://mobipedia.science/sparql
https://mobipedia.science/sparql

Figure 4: Linked Data interface of Mobipedia as seen in a web browser.

Mobipedia is an evolving project due to the dynamic nature of mobile apps: New

mobile applications or versions of existing mobile applications are published every day.

One of our goals, when we first started this project, was to involve the integration of

other published data sets such as the Android Malware Genome Project [90], which

contains information about mobile malware applications. Adding the behavior category

of an application is a step towards that goal.

74

Chapter 6

CHALLENGES OF POLICY EXECUTION

Once the policy capture process is complete, we have to start executing the rules

to protect user privacy and security. We take a look at our rule execution mechanism in

this chapter.

We have described the form of a SWRL rule in Chapter 3. In order for a SWRL

rule to execute, we have to verify that the antecedents of the rule hold true. If so, the

consequent of the rule will be triggered as a true fact and entered into the knowledge-

base. However, when it comes to a mobile device, we have to actually take an action

that is described by the rule. In order to do so, our rule execution system, that is an inter-

nal module of the MithrilAC middleware, keeps track of application activities. Keeping

track of context changes has been tested by [26, 60] and shown to have major energy im-

plications. In order to avoid high energy consumption, which is important on a mobile

device, we focus on application activity detection. It is interesting to note that using this

technique, our middleware consistently consumed less than a single percentage point of

the mobile device’s energy budget (see Chapter 8). When an application is launched our

middleware is able to detect the actions taken by the app, i.e. the query made by an app.

Finally, only when an application and action pair is detected, we take a snapshot of the

current context using our internal context synthesis module and determine a high-level

Semantic user context. At this point, we have all parts of the triple (R, C, Q) and we

75

can query our knowledge-base to discover applicable policies. If an action taken by an

application in the current context violates any of our captured access control rules, we

then block the action from being performed.

The description above might look simple enough but there are quite a few chal-

lenges in performing these tasks. For example, we described detecting application

launch but since Android Lollipop 5.0, getting application launch has become com-

plicated due to the deprecation of the getRecentTasks API. Android did this because

this API could potentially leak personal information of the user. However, we have suc-

cessfully accomplished the vision of performing context-dependent, fine-grained access

control policy execution on Android.

6.1 Android security mechanisms

Over the years there have been a lot of projects, mostly from the open-source do-

main, that were designed to control things on a mobile device. Some prominent exam-

ples include XPrivacy [4], Privacy Guard [38] and OpenPDroid [57]. These projects are

all focused on Android because policy execution would essentially require administra-

tive privileges and Android being open-source, it is possible to modify system behavior.

The XPrivacy [4] project is a module of the XPosed [71] project. XPosed modules act in

the same context as the Android Zygote process. The Android Zygote process is similar

to the Linux init process. Just like in Linux, every application starts as fork of Zygote.

An XPosed module can thus act as the initiating process for every application and thus

is able to control its behavior. This was an interesting solution, but the project stopped

76

development after Android Marshmallow 6.0. As an alternate solution, we came up

with an extension of the Privacy Guard project. The Privacy Guard project takes advan-

tage of the AppOps API and blocks access to resources on the mobile device Figure 1.

It is imperative to note that none of these projects implement context-dependent access

control. As in, if the user has a different policy at home from what they have at work,

these systems would not be able to handle that.

Figure 1: Settings of Privacy Guard

77

Figure 2: Permission screen for a specific app

78

Figure 3: Permission settings on Android Nougat 7.1.2

Android Marshmallow 6.0 made it possible for users to block access to their data

through run-time permission acquisition Figure 2. Although an obvious step towards

79

better access control on mobile devices, it still did not allow dynamic access control.

The advantages of context-dependent access control have been explained in Chapter 3.

It is true that an expert user can possibly go through the five step process on Android

devices to access the permissions screen Figure 3 to modify their choices. However, in

reality these steps are too complicated for normal users, perhaps even for fairly compe-

tent users. Additionally, even if they do make these changes, it is tedious to do so if the

choices are context-dependent. Our policy execution mechanism alleviates the need to

manually make these changes.

6.2 Enhancements in policy execution

There are two different ways that can be used to detect mobile activity on an

Android device. Method one requires root privileges and reads the system log to detect

the launch of an Activity by monitoring the ActivityManager class using the following

command through a shell:

logcat -d ActivityManager:I *:S

We used the second method; i.e. the Usage Stats API that provides access to the

device’s usage history and statistics. However, getting the information about what activ-

ity an application performed is still not accessible through this API. For that reason, we

had to use the AppOps API. It is important to note that although using the AppOps API

we may control the mobile device, getting access to this API is challenging. Moreover,

the AppOps API also does not implement context-dependent access control.

80

6.3 Challenges and solutions

The AppOps API is a hidden API and unavailable in the standard Android SDK.

Which means our first challenge was that our code for the MithrilAC middleware would

not even compile, if we used the public SDK. To access these hidden APIs one may use

Java reflection API but that can slow down the application [13]. There are alternative so-

lutions to using Java reflection, the simplest which is to extract the Android framework

JAR file from a real device using the command:

adb pull /system/framework/framework.jar

The framework.jar is the runtime archive containing all the classes that are used

in the android.jar in the SDK. However, the jar contains the runtime optimized version

DEX format files. So we have to use dex2jar [61] to convert them to class files by using

the command:

dev2jar classes.dex

Next, we extract everything from our target SDK (in our case API version 25) ver-

sion’s android.jar file from the path ANDROID SDK/platforms/android-25/ to

a folder and overwrite it with the classes from the framework.jar file folder. Finally we

compress the modified classes into a jar file to obtain our “hacked” Android SDK an-

droid.jar file with access to the hidden AppOps API.

The second challenge was to detect application actions, as in what resources the

application used. Android’s documentation does not explain this, but we were able to

discover that we can use the AppOps API to detect application actions. Hidden APIs

in Java are often accessed using reflection. However, reflection can be tedious and

81

slow [13]. As an alternate solution, we were able to use the above-mentioned “hacked”

SDK and root privileges to gain access to application actions.

The third task was to actually execute the policies. There are a few ways to do

this. The first would be to create an application like Xprivacy. The second would be

to install Privacy Guard and use root privileges to modify the settings. However, we

decided that third and the best way to do this was through AppOps because it was pro-

vided by Android as an advanced access control tool in Android 4.3. As we explained

in Chapter 2, there are signatureOrSystem permissions in Android that are granted only

to applications with the same certificate as the application that declared the permission.

There are certain permissions that are only granted to apps that are signed by a platform

key. Two such permissions control access to the AppOps API:

<!−− @SystemApi @hide A l low s an a p p l i c a t i o n t o c o l l e c t b a t t e r y s t a t i s t i c s −−>

<p e r m i s s i o n a n d r o i d : n a m e =” a n d r o i d . p e r m i s s i o n . GET APP OPS STATS”

a n d r o i d : p r o t e c t i o n L e v e l =” s i g n a t u r e | p r i v i l e g e d | deve lopment ” />

<!−− @SystemApi A l low s an a p p l i c a t i o n t o upd a t e a p p l i c a t i o n o p e r a t i o n s t a t i s t i c s .

Not f o r

use by t h i r d p a r t y apps .

@hide −−>

<p e r m i s s i o n a n d r o i d : n a m e =” a n d r o i d . p e r m i s s i o n . UPDATE APP OPS STATS”

a n d r o i d : p r o t e c t i o n L e v e l =” s i g n a t u r e | p r i v i l e g e d | i n s t a l l e r ” />

The GET APP OPS STATS permission can be “granted” using root access through

a shell however, the second permission, UPDATE APP OPS STATS is the one required

to execute policies on the device. It cannot be granted to an application even through

a root shell. In order to resolve this we had to compile our own Android ROM. We

82

used the LineageOS Android source for our custom ROM. We did discover that simply

compiling a custom ROM won’t make our middleware a privileged application. There

was one final step that we had to take to ensure that our custom ROM would in-fact

be able to execute the policies that we capture. Every application that is compiled as

part of an Android build has to be placed in the packages/apps/application

folder at the root of the Android source directory and a Makefile has to be present in

the application’s folder that defines rules for the build process. The final step is to add

a rule that defines our middleware as a privileged application for the system as follows:

LOCAL PATH : = $(c a l l my−d i r)

i n c l u d e $ (CLEAR VARS)

LOCAL MODULE TAGS : = o p t i o n a l

LOCAL MODULE : = Mi th r i lAC

LOCAL CERTIFICATE : = p l a t f o r m

LOCAL SRC FILES : = Mi th r i lAC . apk

LOCAL MODULE CLASS : = APPS

LOCAL PRIVILEGED MODULE : = t r u e

LOCAL MODULE SUFFIX : = $(COMMON ANDROID PACKAGE SUFFIX)

i n c l u d e $ (BUILD PREBUILT)

83

Chapter 7

USER-STUDY CHALLENGES

In the previous chapter, we described the various implementation challenges for

an access control system and making it work on a popular mobile operating system like

Android. In this chapter, we will look at the challenges faced while performing our user

study.

The MITHRIL user study was conducted for one and a half months during which

period rooted mobile devices running a custom LineageOS Android ROM was provided

to users. The study was conducted with 24 users and each user used the system for a

period lasting at least seven days and at most 30 days. To detect an app’s launch and

resource consumed by the application requires special privileges and access to certain

Android APIs that are unavailable on official versions of Android. This is why we had

to use LineageOS, which can be used to enable access to APIs that are inaccessible on

an official Android build from Google.

7.1 Default deny policy

We performed the user study in two rounds. The first round of our study did not

use a curated policy and assumed a default deny action for everything. As one might

guess, this caused a problem for the users who were participating in our study. Upon

installation, the MithrilAC middleware started detecting a lot of “violations.” These

84

violations were not necessarily true violations as per our definition from Chapter 3. We

discuss the results of our user study in the next chapter. It quickly became evident that a

user would find it difficult to provide feedback to all the scenarios that our middleware

was presenting to them.

Figure 1: Comparing #violations and #no-response in user study round 1

7.2 Crowd-sourced policy

Following the issues of round 1 of the user study, we decided to use our crowd-

sourced data to generate an initial default policy. We restricted the initial policy gen-

eration for just a few contextual situations. Essentially we wanted to show through the

second round of our user study that it is feasible to use the violation detection method-

85

ology to determine policy deviations for specific users.

Figure 2: Comparing #violations and #no-response in user study round 2

The crowdsourced policy leads to less number of violations. A comparison of

two rounds of user study shows that the number of violations went down in the second

round when a curated policy was used. In contrast, the first round of user study caused

a lot more violations to occur. At the end of the user study, participants were allowed

to respond to a series of questions. A likert-type scale was used for the questionnaire in

order to understand the following questions/issues:

• Do mobile applications take too many permissions and the purpose unclear for a

requested permission?

• Are mobile operating system security and privacy settings difficult to find?

86

• Are application knowledge and ratings useful in making my sharing decision?

• Is the user confident in their ability to manage mobile privacy and security set-

tings?

• Does knowledge that an application used a resource in a specific context makes it

easy to allow or deny such access?

• Are user privacy and security needs context dependent, for example, allowing

social media access at home, but not at work?

• Did the final captured policy better represent? Was using MITHRIL worth the

effort given the benefits?

Users were also allowed to provide feedback using the form. Two example re-

sponses are shown below:

User 1: “As a naive android user, I did not understand all the meanings of the

names of the permissions. Its hard to assess the impact of denying the permission

to an application too. The option for whats allowed and what is blocked in custom

controls is unclear. Semantics of the privacy setting can be more clear. There is a

difficulty understanding the time of old notification. Permissions requested in prior day

can no longer be configured since the exact time unclear. What does allowed ignore

and running mean? All in all its a good starting effort and the setting requires more

explanation and further ease to configure.”

User 2: “MITHRIL is great application and has allowed me to understand my

privacy requirements better. I was surprised by the permissions, by the number of per-

87

missions that were asked by apps. For example, I am not sure why Wikipedia needs

my contacts, call log and calendar details. I was happy that MITHRIL allows context

modeling. It is more useful for some applications than others. For example, I would not

mind if Waze asks for contact information and call log access when I am driving. But,

I would not want it to access that information otherwise. Having context is helpful. I

also like that number of feedbacks asked by MITHRIL reduced over time. Following

are few things that will make application more helpful: 1. It should have more contexts

like ‘Driving’. 2. Rather than having separate context window, I would prefer to add

context whenever needed in customize button. It would be nice to have everything in

same window, rather than having separate window for customization.”

Responses to the feedback questions show that users do feel applications are in-

trusive and controlling while they are unsure why they have requested a permission

while finding permission settings seems difficult to them. 44% users were neutral to-

wards application ratings to decide access decisions while most of them were confident

in making such decisions. Context plays a role in their access decisions and knowledge

of application activity helps in making allow/deny decisions for users. Finally, users

felt the final policy was representative of their needs and using the system was worth

the effort given the benefits.

88

Figure 3: User feedback to questionnaire

In the next chapter, we discuss our evaluation methodologies and results for

MITHRIL.

89

Chapter 8

EVALUATIONS

In this chapter, we take a look at evaluations done as part of this dissertation. We

will dive deeper into our user study and behavioral analytics for applications.

8.1 Policy capture

The policy capture process was studied using two different experimental setups.

The first setup used an emulated LG Nexus 5 device running the popular ROM Cynao-

genMod 13, which is equivalent to Android Marshmallow 6.0. The goal was to show

that it is feasible to use the “Violation Metric” (VM) to determine the completion of the

policy capture process.

8.1.1 Automated study: experimental setup

We set up the experiment with about a 100 different policies curated by hand

using various combinations of contextual situations that we envisioned. Some of our

sample location context included: Home, Work, Lab, Department Office, Classroom,

Meeting Room, Supervisor Office. Sample activity context included: Sleeping, Din-

ing, Traveling, Personal Activity, Professional Activity, Meting, Lab Meeting, Study-

ing, Project Work. We also used presence info and temporal context of working and

non-working hours, in our rules. As stated in our assumptions in Section 4.1.1, the

90

above semantic context is available to the prototype system. For simplicity of exper-

imental setup, we used NFC tags that were programmed with contextual situations to

simulate changes in context. After a context change was observed, we use an automated

script to start various applications on the mobile device that would violate our default

policy P. The examples of such violations has been discussed Section 4.2. All auto-

mated user behavior on the mobile device was created using monkeyrunner API from

Android [29].

Figure 1: Consistent feedback in policy rule changes by user

91

8.1.2 Automated study: results

After each feedback iteration, we recorded the value of the VM metric. Take a

look at the graph in Figure 1. Our simulation includes experiments that VM metrics

over eight feedback iterations from our simulated user. It shows that the variation in

VM metric when a user provides consistent feedback over a number of iteration cycles.

You can see when the feedback is consistent, the VM metric steadily increases towards

a high value. The predefined threshold we use, may be varied by a system administrator.

However, when MITHRIL reaches a state with high precision as determined by the VM

metric, we are able to conclude that policy capture process is complete, and we may

transition from OBSERVER mode to ENFORCER mode.

The VM metric initially shows a low value as a lot of policies are being modi-

fied. As iterations go by, we see a decline in the number of FALSE violations. Once a

violation has been determined to be TRUE we will not require a feedback from user on

that rule, anymore. As a result of that, in the graph, we see a constant decline in the

number of violations and the VM metric increases in value, getting up to 0.9 by our last

feedback iteration. As explained before, this means that whatever violations the system

records are denoted as TRUE violations and we have captured the user’s preferred pol-

icy. Understandably, the VM metric does have certain limitations when it comes to user

feedback being erratic. Therefore, we decided to run a user study to better evaluate our

system.

92

8.1.3 User study: round 1 results

In the user study, we ran our experiments on mobile devices with LineageOS

14.1.1, which is equivalent to Android 7.1.1. The study was done in two phases. One

of the challenges we faced while carrying out the user study was the wide gap between

the number of violations that required user input and the actual number of inputs we

received. This issue occurred due to the fact that we used a default deny initial policy.

Understandably, this caused a huge number of violations. Our argument behind using

a default deny policy was that if the system did not have any policy rules at all, a safe,

but not necessarily good policy would be to block events by default. We also wanted

to test the feasibility of using the violation detection based approach to capture rules

from scratch. Figure 3 shows variation of the VM metric for 10 users over a period of

several days. We conclude from the first round of the user study that a quasi-safe “deny

by default” policy is actually not a good policy from the perspective of usable privacy

and security.

93

Figure 2: Average number of policy changes made per user in round 1

94

Figure 3: Average “Violation Metric” per user across multiple iterations in round 1

8.1.4 User study: round 2 results

Following the conclusions of round one of our user study, we modified our method-

ology to include a crowd-sourced policy. Our crowd-sourced policy was originally

collected by the Xprivacy open-source app [4]. The data can be found at the link:

https://crowd.xprivacy.eu/. We downloaded approximately 21 million rules

for 17k applications and then used category-wise majority voting process to create an

initial default policy for the second round of our study. The crowd-sourced policy is

obtained by the MithrilAC middleware by querying the back-end server. See the results

of the second round of the user study in Figure 4.

95

Figure 4: Average “Violation Metric” per user across multiple iterations in round 2

A comparison of the number of violations and the number of feedback inputs

from the user can be seen in Figure 2. This graph shows that when using a default deny

policy, the number of violations captured were high and the number of times users did

not respond to such violations in the feedback loop was also high. However, as soon

as we started using the crowd-sourced policy as our initial policy generation technique,

we saw a drop in number of violations and the number of times users did not respond

to our queries were negligible.

96

8.1.5 Reduction in user interaction required

We did the user study in two rounds. We had 24 users involved in the study. All

the users were graduate students from the Computer Science department at UMBC. The

maximum number of policies that were created in round 1 for a user was 3200 and that

number came down to 800 in round 2. The average number of applications per user

in the study was 48. Table 8.1 shows the number of users, violations, true and false

violations for the two rounds of user study. From the table we can observe that there

is a drop in the number of violations occurring in round 2 of the user study. At the

same time we also observe a favorable value for the “Violation Metric” in round 2. We

discuss the significance of these results in Section 8.5.

Round #Users #Violations #True violations #False violations

1 14 778 228 550

2 10 347 300 47

Table 8.1: User study violation statistics

In round 1 we used a default deny initial policy. This led to a lot of violations

and user fatigue. As can be seen in Figure 5, “no-response” count in round 1 was pretty

high. As a result, we used a curated policy based off of the Xprivacy crowdsourced

dataset. We use normalized frequency counts for our comparison because the two dif-

ferent phases had varying number of users. The first round ended on July 13 on this

chart. The second round of the user study thus shows lower number of violations as

well as lower number of “no-response” situation from users. The second round of the

user study also show a higher number of users with high value of “Violation Metric”.

97

This shows that starting with a curated initial policy leads to fewer situations where a

user disagrees with the policy defined. Whereas if a default deny policy is used, even

legitimate usage of applications get blocked, leading to a larger number of users dis-

agreeing with the policy and hence results in a lower value of “Violation Metric”.

Figure 5: Comparing user no-response and violations over time

8.2 application analytics

Data set: For our application analytics back-end we experimented with several

machine learning classifiers and variations of feature sets to determine the best combi-

nation of classifier and application features that would perform well for an application

behavior classification task. As far as we have found, the work that is closest to ours,

98

as in trying to perform some kind of application behavior study was CHABADA [34].

CHABADA identifies outliers in a cluster of applications so that if a “weather” appli-

cation tries to send out “messages” it would be flagged as an anomaly. However, their

ultimate goal was to detect malwares using the anomaly detection technique. In our

work, we are taking a slightly different approach by first classifying an application into

it’s behavior category. We define a policy for behavior classes using crowd-sourced data

so once classified an application would have an initial default policy and if it attempts

to perform an action that is inconsistent with the expected behavior, the policy would

block such an action. Therefore, the first step is to carry out classification of applica-

tions into behavior classes. We used system calls as features to perform our behavior

classification task.

We used four different classifiers through the Weka tool [36]. We used the ten

fold cross validation technique for all the classifiers. We used 10 fold cross validation

technique for all the classifiers. We present the average F1–measure achieved by each

of the classifiers for annotated class labels when using tf–idf weighted feature vectors

in Table 8.2. F1–measure for annotated class labels when using 1-hot feature vectors are

presented in Table 8.3. Unfortunately, none of the classifiers recorded a good enough

F1–measure for annotated class labels.

99

Classifier F1 score

MLP 0.44

SVM-RBF 0.32

SVM-Poly 0.31

J48 0.27

NB 0.27

Table 8.2: Annotated class labels, TF-IDF features

Classifier F1 score

J48 0.31

NB 0.27

MLP 0.26

SVM-Poly 0.23

SVM-RBF 0.21

Table 8.3: Annotated class labels, one hot features

For Google’s application category based class labels, average F1–measure achieved

by the classifiers were low as well, as shown in Table 8.4, when using tf-idf weighted

feature vectors or as shown in Table 8.5 when using one hot feature vectors.

100

Classifier F1 score

SVM-Poly 0.39

SVM-RBF 0.38

MLP 0.37

J48 0.35

NB 0.14

Table 8.4: Google class labels, TF-IDF features

Classifier F1 score

J48 0.39

MLP 0.38

SVM-Poly 0.33

SVM-RBF 0.33

NB 0.09

Table 8.5: Google class labels, one hot features

We observed that when using tf–idf weighted feature vectors we were able to

achieve comparatively better classification accuracy as opposed to when using one hot

vectors. Intuitively, this observation makes sense since tf–idf weights better represent

the significance of terms in documents as opposed to simply stating that the document

has a certain term. However, a comparison of the classifiers paints a disappointing

picture. While MLP performed marginally better than other algorithms, for annotated

class labels using tf–idf weighted features, NB did slightly worse than other classifiers

101

for Google categories. In short, none of the algorithms had an outstanding performance

and thus leads to the conclusion that system calls cannot be considered as good features

for application behavior classification. We note that this observation was somewhat un-

expected, given our understanding of system calls and application functionality correla-

tions, from knowledge of similar methods being used successfully, in the literature [48].

As a result, we came up with two possible explanations for these observed results.

The first was that applications have functionality that belong to multiple behav-

ior classes, for example—an application could have the functionality of social media

sharing combined with financial transactions. Take for example WeChat, which has

taken over workplaces in China [84]. WeChat combines instant messaging functionality

with social media sharing while incorporating functions like ride hailing, buying movie

tickets, sending payments, settling utility bills as well as online shopping. Such multi-

functional applications, sometimes called “super applications” where applications are

trying to become the “only” application on your phone by providing a multitude of func-

tionality. This trend can best be explained by a need to retain a high active-user base,

which leads to higher ad-revenue. Ad-revenues understandably are critical for an appli-

cation’s survival today because of the free application economy. As a result, our basic

assumption that an application would serve a singular purpose no longer holds true and

we need to create coarser functional clusters (i.e. “social media-financial” applications)

for behavior analysis.

102

Figure 6: To do list class

103

Figure 7: Scientific calculator class

The second related explanation was easier to demonstrate. We observed that since

applications are trying to provide a slew of different functionality, they end up making

very similar system calls. In order to investigate this further, we generated the tf–idf

word clouds for each of the 10 annotated class of applications. Consider the word

clouds for “To Do list” and “Scientific Calculator” shown in Figure 6 and Figure 7. We

can clearly see that the “ftruncate”, “fstatat” and “clock gettime” have similar tf–idf

weights for both these classes. As a result, these classes were not easily “separable”

and despite the expectation that they would different behavioral patterns, were in-fact

104

making similar system calls.

8.3 Deeper dive into application behavior

The results of behavior classification, we have presented up to now used system

call uni–grams [15]. As we explained in Chapter 5, we hypothesized that system call

n-gram features can possibly lead to better classification of behavioral classes. In our

experiments we used uni, bi, tri, quad gram sequences. We also performed SVD on

the features and used top 10, 100, 500, 1000, 2000, 5000 and 10000 features for our

classification task. Both types of class labels, annotated and Google categories were

used. We performed the deep dive into behavior classification with TF-IDF weight

vectors. This was because when we did not use n-gram features, which is the same as

using uni-gram features and all feature vectors the precision and recall achieved with

1-hot vectors or system call frequency vectors were lower than TF-IDF weight vectors

(see Figure 8, Figure 9, Figure 10, and Figure 11).

105

Figure 8: Best possible precision for Annotated class labels using 1-hot features and

Uni-gram model

106

Figure 9: Best possible recall for Annotated class labels using call frequency features

and Uni-gram model

107

Figure 10: Best possible precision for Annotated class labels using call frequency fea-

tures and Uni-gram model

108

Figure 11: Best possible recall for Annotated class labels using 1-hot features and Uni-

gram model

For the deeper dive and for the sake of automating our classification tasks, we

used the python Sci-Kit Learn library [66]. We used the k nearest neighbors (with 3

neighbors), Linear SVM, SVM with RBF kernel, Decision trees, Random forest, Ada

boost, Naive Bayes, Logistic regression and Neural Net classifiers. We also used a

dummy classifier with most frequent as the option to baseline our classification results.

Additionally, since we were carrying out a multi-class classification task, we used the

One-vs-the-rest (OvR) multiclass strategy from Sci-Kit Learn [6]. For our own an-

notated classes, the best precision and recall was achieved with a bi-gram model and

Nearest Neighbors classifier (see Figure 12 for precision and Figure 13 for recall).

109

Figure 12: Best possible precision for Annotated class labels using TF-IDF features and

Bi-gram model

110

Figure 13: Best possible recall for Annotated class labels using TF-IDF features and

Bi-gram model

For Google Play Store categories, the best precision and recall was achieved with

a uni–gram model and Neural Network classifier (see Figure 14 for precision and Fig-

ure 15 for recall).

111

Figure 14: Best possible precision for Google categories using TF-IDF features and

Uni-gram model

112

Figure 15: Best possible recall for Google categories using TF-IDF features and Uni-

gram model

We also carried out application behavior classification using static features and

found that permission features perform better at this task. Results of the same can be

seen in Figure 16.

113

Figure 16: Static features like permissions perform better application behavior classifi-

cation

8.4 Malware detection

Malware detection has had a fair bit of success till date. We study malware detec-

tion with two goals in mind. The first goal was to determine if permissions can be used

as features to detect malware applications. We are not trying to beat the state-of-the-art

in malware detection merely looking at the feasibility of using permissions as features

to detect malware and we also show that feature importance for the malware detection

task can be used for risk computation for applications. Results of malware detection

can be seen in Figure 17.

114

Figure 17: F1 - scores for malware detection using 10 classifiers

8.4.1 Risk computation using feature importance

The second goal of the malware detection task was to determine if there are per-

missions that are frequently used by malware applications. Feature importance can help

in determining permissions most relevant to malware detection. We used these values

to compute the risk associated with 100 applications from malware and benign appli-

cation categories. Using just the top 100 important permissions and their computed

importance rank values we were able to detect malware with high accuracies.

115

Figure 18: Feature importance can be used to determine malware

Investigating the top features for the malware detection task leads to the conclu-

sion that the following are strong indicators of an application being a malware:

• Access running applications

• Access WiFi state

• Change WiFi state

• See what’s on screen

• Mount file systems

• Relaunch applications

116

Figure 19 shows the features that are important to the malware detection task

based on feature importance:

Figure 19: Features important in detecting malware

8.5 Discussion: Statistical significance

We have presented our results for the user study and application analytics till now.

Next we discuss the significance of our results under varying treatments. We performed

the user study under two different treatments. Under the first treatment we used a default

deny policy and under the second treatment we used a curated policy generated using

crowd-sourced data. Since these two treatments were performed on different sets of

users a paired sample test cannot be performed. We performed an unpaired T-test with

117

the null hypothesis that the two different treatments had the same mean violations and

non-responsive situation for users. We were able to reject the null hypothesis through

our test, since the computed p value was 0.0033.

For our application behavior and malware detection tasks we were able to carry

our paired sample T-tests. We compared the top two machine learning algorithms as per

the F-scores with a null hypothesis that the misclassification error for the two algorithms

had the same mean. We were able to reject the null hypothesis for application behavior

classification with a p value at 0.000013 and for the malware detection task the p value

was 0.00001.

In the next chapter, we present the conclusions of this dissertation.

118

Chapter 9

CONCLUSION

In this dissertation, we have created an end-to-end context-dependent access con-

trol framework. We presented an approach that combines analysis of mobile applica-

tion behavior with on-device mobile application monitoring to create semi-automated

approaches to capture rules representing context-dependent, fine-grained privacy and

security policy for a user. The key contributions of this dissertation include:

• Usage of the “Violation Metric” measure as a means for determining completion

of the policy capture process

• Usage of “Application Behavior” for creating curated initial default policies as a

starting point for the policy capture process

• Feature importance for malware detection as a measure of risk associated with

applications

Furthermore, as part of this dissertation, we created an end-to-end context-dependent

access control approach by monitoring policy violations on users’ mobile devices. We

were able to reduce the amount of interaction required to capture user-specific access

control policies by generating initial policies through a mobile application analysis

back-end. We combined crowd-sourced data with application behavior knowledge to

generate the initial policies. We conducted a user study to show the feasibility of using

119

our violation metric and policy capture method in creating user-specific access control

policies. We enriched the Mobipedia [63] KB with mobile application behavioral facts

and enhanced presence context detection using nearby messages and beacons. In order

to carry out the user study we built a modified Android operating system that allowed

us to perform the monitoring. We used custom ROMs for that purpose.

Some key conclusions drawn as a result of our research and experiments are as

follows:

• User study conducted proves that using a default deny policy creates too many

policy violations and causes user fatigue leading to low number of responses.

• Using a crowd-sourced or curated initial default policy reduces user burden for

policy customization.

• It is fair to use system calls to model mobile application behavior and to use such

a model to create an initial default policy for users.

• Static permission features do improve classification accuracies for application

behavior.

• Permissions requested by mobile applications can be used to detect malware ap-

plications.

• Permission based malware detection task allows computation of risks associated

with applications using feature importances.

• We have studied application activities that were blocked by a policy but allowed

by the operating system.

120

9.1 Future Work

One of the most difficult task, that we had to perform was to get a working system

that captures actual events on a mobile device and feedback from real users about those

events. Given our collected data, an obvious future work is to use pattern recognition

and machine learning algorithms to predict a user’s preference choices. Improvements

to the behavior classification process is an important goal that we hope to pursue in the

future. Since static features improved classification accuracies combining them with

dynamic and network features could lead to better application behavior classifications.

Some of the suggestions made by users in our study could further improve the usability

of the system. We hope to incorporate these in the future. Another potential future

work includes building a policy that blocks applications that are determined to be “too

unsafe” through the risk computation. Finally, we would like to perform study of things

that were allowed in policy and blocked by the operating system.

121

Bibliography

[1] Subhendu Aich, Samrat Mondal, Shamik Sural, and Arun K Majumdar. Role
Based Access Control with Spatiotemporal Context for Mobile Applications.
Transactions on Computational Science, 4:177–199, 2009.

[2] Michael Benisch, Patrick Gage Kelley, Norman Sadeh, and Lorrie Faith Cranor.
Capturing location-privacy preferences: Quantifying accuracy and user-burden
tradeoffs. Personal and Ubiquitous Computing, 15(7):679–694, 2011.

[3] Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer, Christian Becker,
Richard Cyganiak, and Sebastian Hellmann. DBpedia - a crystallization point for
the web of data. Web Semantics: Science, Services and Agents on the World Wide
Web, 7(3):154–165, 2009.

[4] Marcel Bokhorst(M66B). Xprivacy, June 2013.

[5] Andrey Boytsov and Arkady Zaslavsky. From sensory data to situation awareness
- Enhanced context spaces theory approach. Proceedings - IEEE 9th International
Conference on Dependable, Autonomic and Secure Computing, DASC 2011, pages
207–214, 2011.

[6] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas
Mueller, Olivier Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort,
Jaques Grobler, Robert Layton, Jake VanderPlas, Arnaud Joly, Brian Holt, and
Gaël Varoquaux. API design for machine learning software: experiences from the
scikit-learn project. In ECML PKDD Workshop: Languages for Data Mining and
Machine Learning, pages 108–122, 2013.

[7] Iker Burguera, Urko Zurutuza, and Simin Nadjm-Tehrani. Crowdroid: Behavior-
based malware detection system for android. In Proceedings of the 1st ACM
Workshop on Security and Privacy in Smartphones and Mobile Devices, SPSM
’11, pages 15–26, New York, NY, USA, 2011. ACM.

[8] Dave Chaffey. Mobile marketing statistics compilation, March 2017.

[9] Robert Charette. Smartphone app developers being criminally investigated over
privacy issues?, April 2011.

[10] Harry Chen, Tim Finin, and Anupam Joshi. An ontology for context-aware per-
vasive computing environments. The knowledge engineering review, 18(03):197–
207, 2003.

[11] Harry Chen, Tim Finin, and Anupam Joshi. The SOUPA Ontology for Pervasive
Computing. Computing Systems, pages 233–258, 2005.

122

[12] PENG Chen, ZHAO Rong-Cai, Shan ZHENG, XUN Jia, and YAN Li-Jing. An-
droid malware of static analysis technology based on data mining. DEStech Trans-
actions on Computer Science and Engineering, 2016.

[13] Shigeru Chiba. Load-time structural reflection in java. In European Conference
on Object-Oriented Programming, pages 313–336. Springer, 2000.

[14] Mauro Conti, Vu Thien Nga Nguyen, and Bruno Crispo. Crepe: Context-related
policy enforcement for android. In Mike Burmester, Gene Tsudik, Spyros Magliv-
eras, and Ivana Ilic, editors, Information Security, volume 6531 of Lecture Notes
in Computer Science, pages 331–345. Springer Berlin Heidelberg, 2011.

[15] Prajit Kumar Das, Anupam Joshi, and Tim Finin. App behavioral analysis using
system calls. 2017 IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS): MobiSec 2017: Security, Privacy, and Digital Forensics
of Mobile Systems and Networks (INFOCOM17 WKSHPS MobiSec 2017), 2017.

[16] Prajit Kumar Das, Abhay Kashyap, Gurpreet Singh, Cynthia Matuszek, Tim Finin,
and Anupam Joshi. Semantic Knowledge and Privacy in the Physical Web. Pro-
ceedings of the 4th Workshop on Society, Privacy and the Semantic Web - Policy
and Technology (PrivOn 2016) co-located with the 15th International Semantic
Web Conference (ISWC 2016), ISWC 2016, 2016.

[17] Mike Dean, Guus Schreiber, Sean Bechhofer, Frank van Harmelen, Jim Hendler,
Ian Horrocks, Deborah L McGuinness, Peter F Patel-Schneider, and Lynn Andrea
Stein. Owl web ontology language reference. W3C Recommendation February,
10, 2004.

[18] Anind K. Dey and Gregory D. Abowd. Towards a better understanding of con-
text and context-awareness. In First Int. symposium on Handheld and Ubiquitous
Computing (HUC), 1999.

[19] William Enck. Defending users against smartphone apps: Techniques and future
directions. In Proceedings of the 7th International Conference on Information Sys-
tems Security, ICISS’11, pages 49–70, Berlin, Heidelberg, 2011. Springer-Verlag.

[20] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P., Cox, Jaeyeon Jung,
Patrick McDaniel, and Anmol N. Sheth. Taintdroid: an information-flow tracking
system for realtime privacy monitoring on smartphones. In Proceedings of the 9th
USENIX conference on Operating systems design and implementation, pages 1–6,
2010.

[21] Riccardo Falco, Aldo Gangemi, Silvio Peroni, David Shotton, and Fabio Vitali.
Modelling OWL ontologies with Graffoo. In 11th Extended Semantic Web Con-
ference (ESWC), pages 320–325, 2014.

[22] Denzil Ferreira, Vassilis Kostakos, and Anind K Dey. Aware: mobile context
instrumentation framework. Frontiers in ICT, 2:6, 2015.

123

[23] Tim Finin, Anupam Joshi, Lalana Kagal, Jianwei Niu, Ravi Sandhu, William
Winsborough, and Bhavani Thuraisingham. R owl bac: representing role based
access control in owl. In Proceedings of the 13th ACM symposium on Access
control models and technologies, pages 73–82. ACM, 2008.

[24] Christian Fritz and Steven Arzt. Highly precise taint analysis for android applica-
tions. Ec Spride, Tu . . . , 2013.

[25] Johannes Fürnkranz, Dragan Gamberger, and Nada Lavrač. Foundations of rule
learning. Springer, 2012.

[26] Dibyajyoti Ghosh. Context based privacy and security in smartphones. Master’s
thesis, University of Maryland, Baltimore County, 2012.

[27] Dibyajyoti Ghosh, Anupam Joshi, Tim Finin, and Pramod Jagtap. Privacy con-
trol in smart phones using semantically rich reasoning and context modeling. In
Security and Privacy Workshops (SPW), 2012 IEEE Symposium on, pages 82–85,
2012.

[28] Google. Android apps on google play, January 2015.

[29] Google. The monkeyrunner api, October 2016.

[30] Google. Introduction to android, January 2017.

[31] Google. Nearby messages api, May 2017.

[32] Google. Os: Access to low-level system functionality, January 2017.

[33] Google. Ui/application exerciser monkey, January 2017.

[34] Alessandra Gorla, Ilaria Tavecchia, Florian Gross, and Andreas Zeller. Check-
ing app behavior against app descriptions. Proceedings of the 36th International
Conference on Software Engineering - ICSE 2014, pages 1025–1035, 2014.

[35] Tao Gu, Xiao Hang Wang, Hung Keng Pung, and Da Qing Zhang. An ontology-
based context model in intelligent environments. In Communication Networks and
Distributed Systems Modeling and Simulation Conf. (CNDS), 2004.

[36] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,
and Ian H Witten. The weka data mining software: an update. ACM SIGKDD
explorations newsletter, 11(1):10–18, 2009.

[37] Tin Kam Ho. Random decision forests. In Document Analysis and Recognition,
1995., Proceedings of the Third International Conference on, volume 1, pages
278–282. IEEE, 1995.

[38] Russell Holly. Cyanogen os privacy guard keeping apps from seeing your, May
2015.

124

[39] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Benjamin
Grosof, Mike Dean, et al. Swrl: A semantic web rule language combining owl
and ruleml. W3C Member submission, 21:79, 2004.

[40] Vincent C Hu, David Ferraiolo, Rick Kuhn, Arthur R Friedman, Alan J Lang,
Margaret M Cogdell, Adam Schnitzer, Kenneth Sandlin, Robert Miller, Karen
Scarfone, et al. Guide to attribute based access control (abac) definition and con-
siderations (draft). NIST Special Publication, 800(162), 2013.

[41] Pramod Jagtap, Anupam Joshi, Tim Finin, and Laura Zavala. Preserving privacy
in context-aware systems. In Semantic Computing (ICSC), 2011 Fifth IEEE Inter-
national Conference on, pages 149–153, Sept 2011.

[42] Pramod Jagtap, Anupam Joshi, Tim Finin, and Laura Zavala. Privacy preservation
in context aware geosocial networking applications. organization, 2011.

[43] Xin Jin, Ram Krishnan, and Ravi S Sandhu. A unified attribute-based access
control model covering dac, mac and rbac. DBSec, 12:41–55, 2012.

[44] Lalana Kagal and T Berners-Lee. Rein: Where policies meet rules in the semantic
web. Computer Science and Artificial . . . , 2005.

[45] Lalana Kagal, Tim Finin, and Anupam Joshi. A policy language for a pervasive
computing environment. In Policies for Distributed Systems and Networks, 2003.
Proceedings. POLICY 2003. IEEE 4th International Workshop on, pages 63–74.
IEEE, 2003.

[46] Michael Kerrisk. syscalls - linux system calls, December 2016.

[47] Jay Mayfield Kerry O’Brien, Sarah Schroeder. Ftc approves final order settling
charges against flashlight app creator, December 2013.

[48] Andrew P Kosoresow and Steven A Hofmeyr. Intrusion detection via system call
traces. IEEE software, 14(5):35, 1997.

[49] Ponnurangam Kumaraguru and Lorrie Faith Cranor. Privacy indexes: a survey
of westin’s studies. School of Computer Science, Carnegie Mellon University,
Pittsburgh, 2005.

[50] Kangjae Lee, Jiyeong Lee, and Mei-Po Kwan. Location-based service using
ontology-based semantic queries: A study with a focus on indoor activities in
a university context. Computers, Environment and Urban Systems, 62:41 – 52,
2017.

[51] Jialiu Lin, Jason I. Hong, Bin Liu, Norman Sadeh, and Jason I. Hong. Modeling
Users ’ Mobile App Privacy Preferences : Restoring Usability in a Sea of Per-
mission Settings. Proceedings of the tenth Symposium on Usable Privacy and
Security, 1:1–14, 2014.

125

[52] Jialiu Lin, Bin Liu, Norman Sadeh, and Jason I. Hong. Modeling users’ mo-
bile app privacy preferences: Restoring usability in a sea of permission settings.
In Symposium On Usable Privacy and Security (SOUPS 2014), pages 199–212,
Menlo Park, CA, July 2014. USENIX Association.

[53] Bin Liu, Mads Schaarup Andersen, Florian Schaub, Hazim Almuhimedi,
Shikun Zhang, Norman Sadeh, Alessandro Acquisti, Yuvraj Agarwal, Bin Liu,
Mads Schaarup Andersen, Florian Schaub, Hazim Almuhimedi, Shikun Zhang,
Norman Sadeh, Alessandro Acquisti, and Yuvraj Agarwal. Follow My Recom-
mendations : A Personalized Privacy Assistant for Mobile App Permissions This
paper is included in the Proceedings of the Follow My Recommendations : A
Personalized Privacy Assistant for Mobile App Permissions. (Soups), 2016.

[54] Bin Liu, Jialiu Lin, and Norman Sadeh. Reconciling mobile app privacy and
usability on smartphones: Could user privacy profiles help? In Proceedings of the
23rd International Conference on World Wide Web, WWW ’14, pages 201–212,
New York, NY, USA, 2014. ACM.

[55] Teena Maddox. Research: 74 percent using or adopting byod, January 2015.

[56] Enrico Mariconti, Lucky Onwuzurike, Panagiotis Andriotis, Emiliano De Cristo-
faro, Gordon Ross, and Gianluca Stringhini. Mamadroid: Detecting android
malware by building markov chains of behavioral models. arXiv preprint
arXiv:1612.04433, 2016.

[57] mateor. Openpdroid, January 2013.

[58] Pablo N Mendes, Max Jakob, and Christian Bizer. Dbpedia: A multilingual cross-
domain knowledge base. In LREC, pages 1813–1817, 2012.

[59] Trudy Muller and Alex Kirschner. Apple celebrates one billion iphones, July
2016.

[60] Suman Nath. Ace: exploiting correlation for energy-efficient and continuous con-
text sensing. In Proceedings of the 10th international conference on Mobile sys-
tems, applications, and services, MobiSys ’12, pages 29–42, New York, NY, USA,
2012. ACM.

[61] Bob Pan. dex2jar, 2015.

[62] Rahul Pandita, Xusheng Xiao, Wei Yang, William Enck, and Tao Xie. Whyper:
Towards automating risk assessment of mobile applications. In Proceedings of
the 22Nd USENIX Conference on Security, SEC’13, pages 527–542, Berkeley,
CA, USA, 2013. USENIX Association.

[63] Primal Pappachan, Roberto Yus, Prajit Kumar Das, Sharad Mehrotra, Tim Finin,
and Anupam Joshi. Building a mobile applications knowledge base for the linked
data cloud. In MoDeST@ ISWC, pages 14–25, 2015.

126

[64] Primal Pappachan, Roberto Yus, Prajit Kumar Das, Sharad Mehrotra, Tim Finin,
and Anupam Joshi. Mobipedia: Mobile applications linked data. In International
Semantic Web Conference (Posters & Demos), 2015.

[65] Bill Parducci, Hal Lockhart, and Erik Rissanen. Extensible access control markup
language (xacml) version 3.0. OASIS Standard, pages 1–154, 2013.

[66] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine learning in Python. Journal of Machine Learning Research, 12:2825–2830,
2011.

[67] The Linux Information Project. Kernel definition, May 2005.

[68] Chenxiong Qian, Xiapu Luo, Yu Le, and Guofei Gu. Vulhunter: toward discover-
ing vulnerabilities in android applications. IEEE Micro, 35(1):44–53, 2015.

[69] Mengyu Qiao, Andrew H. Sung, and Qingzhong Liu. Merging permission and api
features for android malware detection. Proceedings - 2016 5th IIAI International
Congress on Advanced Applied Informatics, IIAI-AAI 2016, pages 566–571, 2016.

[70] J-Michael Roberts. Virus share, 2014.

[71] rovo89. Xposed, August 2014.

[72] Norman Sadeh, Jason Hong, Lorrie Cranor, Ian Fette, Patrick Kelley, Madhu
Prabaker, and Jinghai Rao. Understanding and capturing people’s privacy poli-
cies in a mobile social networking application. Personal Ubiquitous Comput.,
13(6):401–412, August 2009.

[73] Saguna Saguna, Arkady Zaslavsky, and Dipanjan Chakraborty. Complex activ-
ity recognition using context-driven activity theory and activity signatures. ACM
Trans. Comput.-Hum. Interact., 20(6):32:1–32:34, December 2013.

[74] G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic indexing.
Commun. ACM, 18(11):613–620, November 1975.

[75] Google Android Security. The google android security teams classifications for
potentially harmful applications, April 2016.

[76] Intel Security. Mcafee lbs: Threats report, November 2014.

[77] Karina Sokolova, Charles Perez, and Marc Lemercier. Android application clas-
sification and anomaly detection with graph-based permission patterns. Decision
Support Systems, 93:62–76, 2015.

[78] Statista. Number of available applications in the google play store from december
2009 to june 2017, June 2017.

127

[79] Statista. Number of available apps in the apple app store from july 2008 to january
2017, 2017.

[80] Kimberly Tam, Salahuddin J Khan, Aristide Fattori, and Lorenzo Cavallaro. Cop-
perDroid: Automatic Reconstruction of Android Malware Behaviors. Ndss, pages
8–11, February 2015.

[81] Andrzej Uszok, Jeffrey M. Bradshaw, and Renia Jeffers. KAoS: A Policy and
Domain Services Framework for Grid Computing and Semantic Web Services.
Trust Management –Lecture Notes in Computer Science, 2995/2004:16–26, 2004.

[82] CJ Van Rijsbergen. Information retrieval. dept. of computer science, university of
glasgow. URL: citeseer. ist. psu. edu/vanrijsbergen79information. html, 1979.

[83] Nicolas Viennot, Edward Garcia, and Jason Nieh. A measurement study of google
play. The 2014 ACM international conference on Measurement and modeling of
computer systems - SIGMETRICS ’14, pages 221–233, 2014.

[84] Yue Wang. Tencent’s ’super app’ wechat is quietly taking over workplaces in
china, August 2016.

[85] Stuart Weibel, John Kunze, Carl Lagoze, and Misha Wolf. Dublin core metadata
for resource discovery. RFC 2413, RFC Editor, September 1998.

[86] Waskitho Wibisono, Arkady Zaslavsky, and Sea Ling. Situation-awareness and
reasoning using uncertain context in mobile peer-to-peer environments. Interna-
tional Journal of Pervasive Computing and Communications, 9(1):52–71, 2013.

[87] Z. Yuan, Y. Lu, and Y. Xue. Droiddetector: android malware characterization and
detection using deep learning. Tsinghua Science and Technology, 21(1):114–123,
Feb 2016.

[88] Roberto Yus, Carlos Bobed, Guillermo Esteban, Fernando Bobillo, and Eduardo
Mena. Android goes semantic: Dl reasoners on smartphones. In Ore, pages 46–52,
2013.

[89] Laura Zavala, Radhika Dharurkar, Pramod Jagtap, Tim Finin, and Anupam Joshi.
Mobile, collaborative, context-aware systems. In Proc. AAAI Workshop on Activity
Context Representation: Techniques and Languages, AAAI. AAAI Press, 2011.

[90] Yajin Zhou and Xuxian Jiang. Dissecting android malware: Characterization and
evolution. In Security and Privacy (SP), 2012 IEEE Symposium on, pages 95–109,
May 2012.

128

	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Problem description
	Thesis statement
	Mithril framework

	Contributions
	Dissertation document structure

	Background and Related work
	Android background
	Android security model
	Application signatures and permissions
	Application operations

	Access control background
	Policy representation

	Mobile security research
	Usable privacy research
	Context discovery research

	Conceptual model of Mithril
	Concepts of Mithril
	Motivation for Context-dependent access control
	Framework design
	Framework component: MithrilAC middleware
	Context ontology
	Presence context using Nearby
	Violation Metric
	Dual operational mode
	User Feedback Algorithm
	Framework component: Heimdall back-end

	Policy capture middleware
	Approach to policy capture
	Assumptions
	Policy Store
	Policy Decision
	Policy Enforcement
	User Policy Control

	Use Case Scenarios
	Use case - True Violations:
	Use case - False Violations:

	System Implementation

	application analytics back-end
	Approach to Mobile Application Analytics
	Machine Learning pipeline setup
	Download module
	Annotation module
	System call module
	Feature generation module
	Classification module
	N-grams of system calls

	Malware detection
	About Mobipedia
	Adding behavior knowledge into Mobipedia
	Accessing Mobipedia

	Challenges of policy execution
	Android security mechanisms
	Enhancements in policy execution
	Challenges and solutions

	User-study challenges
	Default deny policy
	Crowd-sourced policy

	Evaluations
	Policy capture
	Automated study: experimental setup
	Automated study: results
	User study: round 1 results
	User study: round 2 results
	Reduction in user interaction required

	application analytics
	Deeper dive into application behavior
	Malware detection
	Risk computation using feature importance

	Discussion: Statistical significance

	Conclusion
	Future Work

	Bibliography

