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Abstract

The growth in knowledge sharing enabled by the (Se-
mantic) Web has made trust an increasingly critical issue.
Based on explicit inter-agent trust relations, a trust network
emerges on the (Semantic) Web in the knowledge sharing
context. The concept of a trust network and its application
to knowledge sharing have received recent attention but nei-
ther their structural properties (e.g. dynamics, complexity)
nor inference mechanisms (e.g. trust discovery, trust evo-
lution, trust propagation) have been well addressed. This
paper formalizes trust network inference notions, provid-
ing both data and computational models, and suggests an
evaluation model for benchmarking. The data model clari-
fies the data (context, restriction, output) used by trust net-
work inference for knowledge sharing. It also elaborates
trust network representation and articulates different types
of trust. The computational model reviews graph theory
and referral network interpretations of trust network infer-
ence and proposes a new one that treats trust network as
an emergent property. This new model supports both trust
evolution and trust propagation. The evaluation model de-
scribes metrics as well as methods to generate test scenar-
ios and data. We argue that this approach is more customiz-
able, flexible and scalable than traditional approaches such
as public reputation systems and collaborative filtering.

1. Introduction

Our individual unique experiences lead to a diversity of
knowledge. By sharing knowledge with one another, we
greatly extend our understanding of the world. The Se-
mantic Web will make large amounts of online informa-
tion available in the form of simple statements to commu-
nities with both people as well as artificial agents. In such
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communities the following hold: (i) knowledge is sparsely
distributed, but an individual can consult others to reduce
his ignorance; (ii) there are many criteria for accepting a
statement as true (e.g., social facts reflect the community
consensus whereas subjective beliefs reflect an individual’s
judgments); and (iii) inconsistent knowledge may co-exist
for a variety of reasons (e.g., individual disagreements, dis-
honest individuals, and erroneous belief judgments.)

Consider an abstract system of agents and objects, where
each agent has beliefs over some objects and is ignorant of
the rest. The problem is – how does an agent reduce its ig-
norance through knowledge sharing? A real world instance
of this problem is “when shopping on an online store, a user
may go to the rating service Bizrate (http://bizrate.com/) to
check the store’s reputation”. In this case, the customer’s
ignorance is reduced by sharing rating information from
Bizrate.

Traditional approaches to this problem include content
filtering, social information filtering (collaborative filter-
ing), reputation systems, Peer-to-Peer(P2P) systems, and re-
ferral systems [16]. Content filtering evaluates the relevance
and usefulness of other agents’ beliefs. Reputation systems
build reputation for an object by summarizing agents’ be-
liefs over it. Collaborative filtering assumes that similar
agents have similar beliefs. The first three approaches are
centralized systems, which might not scale well. P2P sys-
tems and referral systems, however, are designed for dis-
tributed environments and can be viewed as simple ver-
sions of a trust network. Trust is captured implicitly by
the neighborhood relation in P2P systems. Referral systems
even maintain and use trust for recommendation [15]. Un-
fortunately, all these approaches tend to underestimate trust,
which is the key to knowledge sharing.

Trust can be used to reduce search complexity and to
combine the beliefs of multiple agents. Atrust networkis
essentially an online social network, where agents are inter-
linked by trust relations. Intuitively, trust is used to estimate
the quality (e.g. the accuracy rate) of an agent’s beliefs. In-
stead of having to know everything locally, agents share



knowledge based on their trust relations in a decentralized
manner. In contrast to traditional approaches, a trust net-
work has the following desirable features:expressiveness–
the rich meaning of trust is explicitly captured;flexibility -
agents can interpret trust by themselves;scalability trust
supports unrestrained growth of the community; andprac-
ticality– trust can be locally evolved and propagated, and
therefore facilitates the propagation of beliefs.

This work builds on our previous work on modeling trust
[5]. Our goals are three fold: (i) to develop a rich frame-
work for modeling and computing trust relationships in an
open P2P system; (ii) to test, refine and evaluate the frame-
work through simulations, and (iii) to “field test” the result-
ing framework as a component in one of more real world
applications. This paper details the framework developed so
far and our plans for evaluation. Candidate applications for
field testing include several pervasive computing projects in
our research group [11, 3, 12], an agent based trading sim-
ulator [21], and several new semantic web projects.

The rest of this paper is structured as follows: section two
describes thedata model, which formalizes the meaning of
trust and explains data used in trust network inference; sec-
tion three describes thecomputational model, which sum-
marizes the primitive operations and existing interpretations
of trust network inference; section four elaborates the oper-
ations and emergent properties in our emergence interpre-
tation; section five proposes anevaluation model, which
overviews our general framework, the evaluation metrics
and the creation of test data (including real world data); sec-
tion six briefs the experimental design; and section seven
concludes our work.

2. Data Model

Through a trust network, agents form a peer-to-peer
(P2P) system, sharing their knowledge and deriving beliefs
collaboratively. We restrict agents as intelligent software
agents and knowledge as belief status about objects. Fig-
ure 1 depicts the data model of trust network inference. The
environment(i.e.,a P2P system) is characterized by con-
text and restriction, which are partially known by an agent.
Trust network inference takes input from both environmen-
tal knowledge and agents’ trust knowledge, updates its trust
knowledge and outputs the estimated beliefs. Theexpected
belief is what the agents really want, and is approximated
by the estimated belief output by trust network inference.
In the rest of this section, we elaborate the boxed data:
“context”, “restriction”, “estimated belief”, “expected be-
lief” and “trust” respectively.
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Figure 1. Trust Network Inference Data Model

2.1. Context

The contextis part of the input of trust network infer-
ence. It describes the general configurations of a P2P system
of agents, e.g., “how many agents and objects are included”,
and “how knowledge is distributed”. The P2P system is de-
fined by having N distinctive agentsA = {a1, a2, ...aN}
and M distinctive objectsO = {o1, o2, ...oM}. The range
of belief status varies in different applications: Boolean
is used for logical inference purpose, and real is used
for rating purpose. We assume that the objects are propo-
sitions, and that the range of belief status isSV B =
{unknown, true, false}, so that an agent may have three
belief status about a proposition. The knowledge distribu-
tion of the P2P system is represented by abelief matrix

belief : A×O → SV B (1)

wherebeliefio refers to an agentai’s personal beliefabout
an objectoo. An agentai’s knowledge base is a vector
KB[i] = {beliefio|1 ≤ o ≤ M}.

Relevant objects can be grouped by a set ofdomains
D = {d1, d2, ...dL}. Intuitively, belief status about rele-
vant objects is collected with similar accuracy and used for
similar purpose. Domain information provides a short di-
gest about an agent’s belief distribution, so the value ofL
should be small to avoid complexity issues. In addition, it
is not practical to assume that all objects share a single do-
main. For example, consider two propositions about a web-
site: (o1) “website X has good page design” and (o2) “web-
site X provides secure payment mechanism”. Since people
often use them for different purpose, it is better to assign
them to two different domains, i.e., “information quality”
for o1 and “security” foro2.



2.2. Restrictions

Knowledge sharing is motivated and restricted by
bounded resource, such as process time, communi-
cation bandwidth, and memory size. In trust network
inference, we focus on the restrictions that directly af-
fect inter-agent communication, namely “knows matrix”
and “cost matrix”.

The directed “knows” relation restricts the communica-
tion channel between agents. It restricts an agent’s neigh-
borhood (the agents it can directly send a query). Intuitively,
the “knows” relation functions like an address book, i.e., for
any two agents to interact, one agent should know the other
agent’s address before it initializes the communication. A
knows matrixcollects the “knows” relation, which is repre-
sented by:

knows : A×A → {false, true} (2)

whereknowsij means agentai knows agentaj ’s communi-
cation address. The “knows” relation is not transitive: given
knowsij = true, knowsjk = true andknowsik = false,
ai knowsak unlessaj introduceak to ai.

The directed “cost” relation imposes cost restriction to
agent communication. It enables agents to do cost/benefit
analysis before they communicate. Intuitively, agents have
to pay for communications, e.g., money spent in long dis-
tance phone call, and time spent in waiting for email reply.
There is also a social cost to communication, since it puts a
burden on the query agent, and the level of burden one can
put on a given agent depends on many social factors. Even
with the web infrastructure, communication cost is nontriv-
ial: sharing beliefs with a colleague at work is much cheaper
than consulting with a busy expert in another country. The
costrelation can be represented by:

cost : A×A → R+ (3)

wherecostij means the average cost when agentai com-
municates with agentaj . It is notable that the cost matrix is
not symmetric, i.e.,costij may not equal tocostji.

2.3. Estimated Belief and Expected Belief

The estimated beliefis derived from trust network in-
ference, and theexpected beliefis the ideal target for trust
network inference. We assume that the expected beliefs can
be derived given the complete global knowledge. However,
agents in P2P systems can only obtain knowledge from lim-
ited peers through trust network inference. By evolving trust
network, agents may derive the estimated belief closer to the
expected belief.

The expected beliefφ is defined similar to belief, where
φio means agentai’s expected belief over objectoo. It can

be derived from a weighted aggregation of all agents’ be-
liefs:

φ : A×O → SV B (4)
φio = ♦

j
[wijo, beliefjo] (5)

wherewijo is weight assigned byai over aj ’s belief on
oo. ♦ denotes the aggregation function that combines the
weighted beliefs.

2.3.1. Interpretations of expected belief.It is notable
that agents may have different interpretations and weight-
ing schemas for the expected belief. Commonly used inter-
pretations are listed as the following:

Local isolated. This interpretation assumes that an agent
fully trusts itself while never trusts the other agents.
An agentai’s expected beliefφlocal

io about objectoo is
the same asbeliefio.

Global uniformly weighted. This interpretation as-
sumes complete global knowledge and treats all
agents equally. The weighting schema is shown in
equation 6.

wg−uniform
ijo = 1 (6)

Global weighted. This interpretation assumes enough
global knowledge and treats all agents differently by
their global reputation. Global knowledge is “enough”
when it includes the knowledge from all agents’
with non-zero weight. The global reputation is de-
noted byRj , which comes from certain reputation
system. . The weighting schema is shown in equa-
tion 7.

wg−weighted
ijo = Rj (7)

Collaborative. This interpretation assumes that agents de-
cide weighting schema themselves. Given an objectoo,
each agentai weights another agentaj ’s beliefs based
on ai’s evaluation aboutaj ’s quality Eijo. By assum-
ing that similar agents have similar beliefs, collabora-
tive filtering derivesEijo from the pair-wise similar-
ity between agents. The weighting schema is shown in
equation 8.

wcollaborative
ijo = Eijo (8)

2.3.2. Aggregation functions.Aggregation functions
combine agents’ beliefs into one belief. The range of be-
lief value, i.e., SVB, determines the selection of aggregation
function. “Majority consensus” functions are well-known
for handling beliefs with discrete value, and numeri-
cal functions are useful for handling beliefs with continu-
ous value (e.g. integer, real number).

We first summarize the numerical approaches for the
continuous belief aggregation. LetSV B = [L,H], where
L and H are the lower bound and higher bound respectively,



andSV B ⊂ R. According to [6, 14], there are four inter-
pretations: average, median, max and min.

We then formalize two majority consensus ap-
proaches for discrete belief aggregation, namely “sim-
ple majority” and “entropy based majority”. Let
SV B = {v0, v1, v2, ...vZ}, where v0 represents “un-
known” and the restvi are independent and non-comparable
belief values. The summed weightWio is defined by equa-
tion 9, whereS be subset ofSV B.

Wio(S) =
∑

aj∈A, beliefjo∈S

wijo (9)

Thesimple majorityaggregation function (equation 10)
uses an empirical valueαk (our previous experiments use
0.5) to control the consensus result based on context bias.

♦majority
io =

{
vk if Wio({vk})

Wio(SV B) ≥ αk

v0 otherwise
(10)

Theentropy based majorityaggregation function (equa-
tion 13) also uses an empirical valueα to control error.
An entropy [10] reflects the degree of disorder of the be-
liefs collected from all agents. Only whenentropy is low
enough, consensus might be reached.

entropyio(S) =
∑

vk∈S

−Wio({vk})
Wio(S) log2

Wio({vk})
Wio(S) (11)

gainio(S, vk) = entropyio(S)
−Wio(S−{vk})

Wio(S) entropyio(S − {vk}) (12)

♦entropy
io =

{
v0 if entropyio(SV B) ≤ α
arg max
vi∈SV B

(gainio(SV B, vi)) otherwise

(13)

2.4. Trust Data

In a P2P system,trust characterizes the directed pair-
wise inter-agent trust relation. It can be viewed as a spe-
cial type of belief, and can be interpreted as “the estima-
tion of an agent’s belief quality”, or “the similarity between
two agents”. The global trust state of the entire agent soci-
ety can be captured by atrust matrix, which is represented
by:

trust : A×A×D → SV T (14)

wheretrustijd means how much agentai trust agentaj ’s
belief on objects in domaindd. SVT refers to the range
of trust values (see section 2.4.1). Normally, an agentai

only maintains its own trust knowledge,{trustijd|1 ≤ j ≤
N, 1 ≤ d ≤ L}, and obtain the other agents’ trust knowl-
edge through agent communication. In addition, trust is de-
fined on domains but not objects due to resource bounds.

By assuming all objects belong to a single domain, the trust
matrix can be simplified to a 2D matrix. However, this sim-
plification may not work well in practice, since not all ob-
jects are relevant enough to belong to one domain.

2.4.1. Trust value. The value of trust reflects the confi-
dence over the trust knowledge. The range of trust,SV T ,
can be either Boolean or numeric. Boolean trust is always
the assertive decision derived from either logical inference
or machine learning results. Numeric trust value can cap-
ture the uncertainty of trust more accurately; therefore, it is
suitable for trust network inference. We note that no agree-
ments have been made [7] on the exact numerical trust rep-
resentation, especially when distrust is considered. So we
identify four existing type of numeric trust value schema as
the following:

1. Golbeck et al. [6] suggest a graded trust which has nine
grades ranging from absolutely distrust to absolutely
trust. This idea is a simple extension of graded ratings
in reputation system, and human users can easily un-
derstand and annotate trust ratings.

2. Richardson et al.[14] and Guha et al. [13] suggest us-
ing real value trust within[0, 1], where 0 means fully
ignorance and 1 means fully trustworthy . Distrust is
maintained by maintaining trust over the negation of
beliefs.

3. Josang [1] proposes subjective logic based trust and Yu
and Singh [18] prefer a Dempster-Shafer Theory based
trust to represent trust as a triplet(trust, distrust, igno-
rance), where ignorance is used to capture the uncer-
tainty of trust due to lacking of experiences. However,
there could be another component called “untouched”,
which shows the proportion of example space (all ob-
servations) to the entire domain space. For example,
ratings based on 100 reviews are less trustworthy than
those based on over 10,000 reviews in Bizrate.com;
“Familiar with football” does not necessarily imply
“familiar with sports”; and misunderstanding often
come from unbalanced observations. The “untouched”
component can be removed only when either there is
no unsolicited items in the domain, or assume the so-
licited experience has the same distribution as the un-
solicited experience.

4. Our previous work [5] used a real value trust within
[0, 1], where 0 means fully distrust, 0.5 means fully ig-
norant, and 1 means fully trust. We adopt this repre-
sentation for two reasons: (i) trust knowledge evolves
as a Markov process, i.e., agents adjust trust value only
based on current trust value and newest observations;
(ii) the three trust state (trust, ignorance, distrust) are
exclusive, and ignorance is unavoidable when moving
between trust and distrust.



2.4.2. Types of trust. Simply knowing “ai trustsaj in do-
main X” does not fully capture the meaning of trust, and
we should also consider the provenance and usage of trust
knowledge. Therefore, we classify two categories of trust
in knowledge sharing context: (i)referral trust reflects an
agent’s estimation about the quality of the other agents’
knowledge. It is derived by an agent itself and used to di-
rect query communication. Since it evolves dynamically,
we adopt the fourth trust value schema defined in section
2.4.1 (ii) associative trustreflects the similarity between
two agents. It is derived by comparing two agents, and its re-
liability depends on the number of observations and the dis-
tribution of evidence. Since it does not introduce distrust,
we adopt the second trust value schema defined in section
2.4.1.

It is notable that trust itself can be used to propagate trust.
Equation 15 depicts how agentai derive trust toaj via its
trusted agentak.

trustXij = trustYik ◦ trustZkj (15)

where◦ is a concatenation operator, which is commonly a
multiply operator.

Based on [15, 5, 13], we identify five types of trust and
their trust propagation mechanisms as the following:

Domain Expert Trust (DET) is referral trust that eval-
uates the quality of an agent’s domain knowledge.
trustDET

ijd refers to an agentai’s estimation about the
quality of agentaj ’s belief over any objects in do-
main dd. Intuitively, DET is not transitive, but DET
may imply RET (see next item) on the same do-
main. Figure 2 depicts agent ‘A’ have DET of 0.8 to
agent ‘U’, so ‘A’ might infer its RET of 0.7 to ‘U’.

UA
DETau=0.8

RETau=0.7

Figure 2. Propagate trust using DET

Recommendation Expert Trust (RET) is referral trust
that evaluates an agent’s trust knowledge.trustRET

ijd

refers to an agentai’s estimation over the qual-
ity of agent aj ’s trust knowledge in domaindd.
In real world, the domain used in RET is often
much wider than DET, e.g. CNN is a domain ex-
pert only in news area, while Google.com is a
recommendation expert in almost any area. More-
over, RET in transitive according to its definition, so
it can be used to propagate both DET and RET. Fig-
ure 3 depicts an agent ’U’ having a DET of 0.9 to an-

other agent ’V’. Agent ’A’ who has an RET value of
0.8 can infer a DET value of 0.72 to agent ’V’.

U

V

A
RETau=0.8

DETuv=0.9

DETav=0.72

Figure 3. Propagate trust using RET

Similar belief trust (SBT) is an associative trust that eval-
uates the similarity of two agents’ domain knowledge.
trustSBT

ijd refers to the similarity from agentai’s be-
liefs to agentaj ’s beliefs within domaindd. Intuitively,
SBT clusters information providers, and it can be used
to propagate DET. Figure 4 depicts two agents ’U’ and
’V’ who have similar beliefs{b1, b2, ..., bk}, so they
have a high SBT value of 0.9. This enables an agent
’A’ who has a DET trust value of 0.8 to infer a DET
value of 0.72 to ’V’.

U

V

b1

bk

…

A

DETau=0.8

SBTuv=0.9

DETav=0.72

Figure 4. Propagate trust using SBT

Similar trusting trust (STT) is an associative trust that
evaluates the similarity of two agents’ trust knowl-
edge.tSTT

ijd refers to the similarity of agentai and
agentaj ’s referral trust to the other agents within do-
maindd. Intuitively, STT clusters trustors (agents who
maintain trust knowledge), and it can be used to prop-
agate both DET and RET. Computing STT needs trust
knowledge from only two agents. Figure 5 shows two
agents ’U’ and ’V’ with similar trust towards agents
{a1, a2, ..., an}. If ’U’ has a DET trust value of 0.8 to-
wards a new agent ’A’, then ’V’ can infer a trust value
of 0.72 to ’A’.

Similar cited trust (SCT) is an associative trust that eval-
uates the similarity of how two agents are trusted.
trustSCT

ijd refers to the similarity of agentai and agent
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STTvu=0.9

DETva=0.72

Figure 5. Propagate trust using STT

aj are trusted by other agents within domaindd. Intu-
itively, STT clusters trustees (agents who are trusted)
by their reputation, and it can be used to propagate both
DET and RET. Reliable SCT requires trust knowledge
from a large population of agents. Figure 6 shows a
set of agents{a1, a2, ..., an} who have similar trust to-
wards agents ’U’ and ’V’. So an agent ’A’ who has an
RET trust value of 0.8 to ’U’ can infer an RET trust
value of 0.72 to agent ’V’.

U

V

a1

an

…

A

RETav=0.72

SCTuv=0.9

RETau=0.8

Figure 6. Propagate trust using SCT

3. Computation Model

The operations involved in trust network inference are
not limited to propagating and combining beliefs through
trust. We also need to consider how trust knowledge is dis-
covered and evolved. In the rest of this section, we propose
a general computation model which consists of five primi-
tive trust operations. We then compare how three interpre-
tations fit in this model.

3.1. Primitive Trust Operations

Since trust is the hypothesis learned from past experi-
ences, trust network inference should consider both creat-
ing and using a trust network. We identify five primitive op-
erations as the following:

1. Trust discovery. Though we can evolve trust network
without any prior trust knowledge, it is highly desired
to discover trust knowledge from publicly accessible
information on the (Semantic) Web. Prior trust knowl-
edge can be derived from many sources: (i) (Semantic)
Web documents that contains inter-personal relations,
e.g. FOAF personal profile, DBLP co-authorship and
Epinions.com “web of trust”; (ii) link structure of the
(Semantic) Web, e.g. how one’s homepage links to an-
other person; and (iii) correlations, especially similar-
ity analysis results, e.g. co-belief (having quite a lot
overlap in beliefs) and co-cited relations between indi-
viduals.

2. Trust evolution. Evolving trust enables an agent to
derive personal trust knowledge from its own experi-
ence. Unlike the discovered trust knowledge, evolved
trust knowledge is more reliable because it is based
on first hand experiences. The intuition of trust evolu-
tion is: agents assume consensus results as correct be-
lief to label their query experiences with other agents,
and then use these labeled experience to evolve their
trust knowledge. In practice, DET is learned first, and
then RET is learned based on DET.

3. Trust propagation. Through an existing trust net-
work, we need to propagate trust effectively and cor-
rectly for many purposes: to derive the missing edge in
trust network, to find relevant information sources effi-
ciently, and to aggregate beliefs from multiple agents.
Based on the discussion in section 2.4.2, both referral
trust and associative trust can be used to propagate re-
ferral trust. An important issue is how to concatenate
and aggregate trust knowledge during trust propaga-
tion.

4. Trust directed query. Trust can help navigating the
trust network effectively. Given the context, restriction
and trust knowledge, agents need to direct queries col-
laboratively to a limited amount of the most helpful
agents. In addition, upon receiving a query, an agent
may reply its belief or refer other agents based on its
referral policy.

5. Trust based belief aggregation.Having collected the
beliefs from peer agents, an agent needs to aggregate
these beliefs to derive the estimated belief. Two issues
should be considered: (i) choosing appropriate aggre-
gation function, and (ii) converting trust to Boolean
value (it is also called “rounding” by Guha et al. [13]
and emphasized as a non-trivial problem).

3.2. Interpretations of Trust Network Inference

Table 1 briefly compares three interpretations of trust
network inference (the first two are from existing work



Graph theory based Referral network Emergence
Context data belief matrix expertise vector belief matrix
Restriction data no neighbor list and acquaintance listknows matrix
Trust data referral trust, SCT, STT DET, RET DET, RET, SBT, STT, SCT
Expected belief not required use interest vector not required
Trust discovery no no inferred from FOAF data
Trust evolution no yes, feedback yes, Marcov process
Trust propagation yes no yes
Trust based query follows all possible paths follows only relevant paths follows only trusted paths
Trust based belief aggregationmax, min, average user determined simple majority consensus

Table 1. A comparison of three trust network inference interpretations

and the last one is proposed by us) under the computation
model. The remainder of this section and section 4 will dis-
cuss them in detail.

3.2.1. Graph theory based interpretation. Graph theory
has been used to interpret trust network inference [6, 14,
13]. The interpretation assumes a single-domain transitive
directed trust network. The data model uses: a belief ma-
trix B, a 2D trust matrixT for beliefs, another 2D trust ma-
trix D for the negated beliefs, and a trust propagation ma-
trix R. It does not differentiate DET and RET. The compu-
tation model involves: (i) trust propagation,R is created by
the following functions [13]

M = f(T, D)
R = α1M + α2M

T M + α3M
T + α4MMT (16)

whereαi weight the contributions from different type of
trust, and f(x,y) determines how to propagate distrust.Rk

refers to the propagated trust atkth iteration; (ii) Trust
based belief aggregation, the estimated beliefE(k) is de-
rived by equation 17.

E(k) =
{

B if (k = 0)
E(k−1) ·R if (k > 0)

(17)

The issues with this interpretation are:

• This model does not support “strong trust path” intu-
ition, i.e., a trust path is valid unless all steps on it are
highly trusted. In figure 7, graph theory based inter-
pretation treat both paths P1 (a → b → d) and P2
(a → c → d) the same, and the propagated value
is 0.38 (“max” is used as path aggregation function).
However, real world users may disregard P1 since
(a → b) is weak for propagating trust, and will only
consider P2 as a valid trust path.

• The propagation matrix R consists of both referral trust
and associative trust. However, effective associative
trust requires global knowledge and stable trust knowl-
edge. In addition, according to the discussion in sec-

a

b

d

c

0.4 0.95

0.6
0.6

Figure 7. Trust propagation

tion 2.4.2, STT should be put to the left ofE(k−1) in
equation 17.

3.2.2. Referral network interpretation. Social theory
also has been used to interpret trust network inference
[8, 15, 20]. This interpretation assumes a multi-domain di-
rected referral social network. The data model uses: an
agent’s domain knowledge is stored in expertise vector E,
the expected belief is stored in interest vector I, the com-
munication restriction is captured by its neighbor list and
acquaint list, its DET is maintained as “estimated exper-
tise”, and its RET is maintained as “sociability”. The com-
putation model involves: (i) trust evolution, where an agent
evolves its trust over the solicited agents based on its judg-
ment about their answer; (ii) trust based query, where an
agent starts from its neighbors and searches through refer-
ral network for “good” answer collaboratively (a participant
agent may reply with a confident answer as well as refer an-
other expert).

The issues with this interpretation are:

• The answer evaluation mechanism is only based on the
relevancy of an answer, which might be vulnerable to
malicious agents providing relevant but incorrect an-
swer.

• It may not be appropriate to assume that an agent al-
ready knows the expected belief.

• Reply with answer and refer other experts may not be
exclusive.

3.2.3. Emergence interpretation.Emergence interpreta-
tion roots from referral network interpretation. It also makes



the following improvement: it allows agents to be more per-
sonalized; it does not assume that agents know expected be-
lief and allows agents to derive estimated belief by consen-
sus, it allows the existence of inconsistent knowledge, and
it supports automatic trust evolution. The data model in-
cludes: each agent knows its domain knowledge, resource
restrictions, and its policies for local interaction. Prior trust
knowledge can be added as reference in the absence of self-
derived trust knowledge. The computation model includes
all five primitive trust operations. We leave the details of
this interpretation to the next section.

4. Emergence Interpretation

The emergence interpretation concerns both the main-
tenance and usage of trust network inference. In P2P sys-
tem, trust network is maintained by individual agents at mi-
cro level, and it is used (i.e., queried) as one entity at macro
level. Macro level properties associating with a trust net-
work could be the graph structure, overall query accuracy,
agent interaction pattern. In the rest of this section, we first
discuss micro level activities and then discuss macro level
properties.

4.1. Local Agent Interaction

In knowledge sharing P2P system, local agent interac-
tions are primarily query activities. Aquery activityis de-
fined as a tuple(i, k, est) , which means that agentai

queries the belief about objectok and then concludes the
estimated beliefest. Theestimated beliefderived by con-
sensus can be used as correct answer in absence of the ex-
pected belief.

Within the query activity, ai may consult zero or
more other agents’ for their beliefs overok, and then de-
termine their contributions by comparing their beliefs
with est. A contribution shows importance of a con-
sulted agent’s belief to the estimated belief. It is defined
as a tuple(i, k, j, type, weight, belief) where aj con-
tributes abelief in a certaintype with weight to ai’s query
on ok. The “type” of a contribution indicates what part of
aj ’s knowledge is used, such as belief overok, and refer-
ral trust about another agent. The “weight” of a contri-
bution indicates both the estimated strength and the cor-
rectness ofaj ’s knowledge, and it is defined within
[−1, 1], where the strength is determined by the abso-
lute value and the correctness is determined by the sign,
e.g. 0.8 corresponds to a correct belief with strong con-
tribution and −0.1 corresponds to an incorrect belief
with weak contribution. The “belief” isaj ’s real be-
lief.

4.2. Trust Evolution

Trust evolution focuses on evolving referral trust through
agent query interactions. Intuitively, trust evolution brings
frequently used experts closer, and it also brings agents with
similar interest closer. In our practice, DET and RET are
evolved differently through the following steps:

• Derive the correct belief.Correct belief is used to de-
termine the correctness of the beliefs contributed by
other agents. By running majority consensus in trust
based belief aggregation, we use the estimated belief
as the correct belief when not knowing the expected
belief.

• Evaluate the quality of contributed belief.Trust is
evolved differently based on “boostFactor”, which
shows the quality of contributed belief. “boostFac-
tor” ranges within [-1,1]. Its sign indicates whether an
increase or decrease of trust, and its absolute value in-
dicates how much should trust value change. Ta-
ble 2 shows our practice in trust using Boolean value.

contributed belief true false unknown
correct belief
true 1 -1 0
false -1 1 0
unknown 0.2 0.2 0

Table 2. BoostFactor example

• Evolve DET. We adopt stateless Markov learn-
ing model, which use only current state to derive the
next state. Given all queries are about the same do-
main, the trust evolution runs according to a recursive
function as below:

t(n) = f(t(n−1), boostFactor, weight) (18)

wheret(n) refers to the trust value after an agent’snth

query activity. “boostFactor” is determined in table 2,
and “weight” is the weight of the participant agent’s
contribution. We further suggest two implementations
of f :

f(x, bf, w) = x(1−bf ·w) (19)

f(x, bf, w) =
{

x(1 + bf · w) if bf < 0
x + (1− x)bf · w else

(20)

• Evaluate referrers’ contributions.A referrer’s contri-
bution is determined by the contributions of the do-
main experts it recommended.



• Evolve RET.This is a complex issue where many
heuristics can be used [19]. By only evolving RET to
the referrers who directly recommended a domain ex-
perts, an agent can reduce the length of referral path.

4.3. Trust Propagation

According to the discussion in section 2.4.2, an agent can
build a local trust propagation graph which is similar to re-
ferral graph [19]. Unlike the evolved referral trust, propa-
gated trust is temporarily derived for a certain query activ-
ity, and it will not modify an agent’s personal trust knowl-
edge directly. In addition, we need to have sufficient con-
fidence over the propagated trust. We adopt the following
heuristics to propagate trust effectively and correctly:

• “Strong trust path”.Each edge in the local trust prop-
agation graph should be highly trusted; therefore, no
“weak link” will be part of a trust propagation path.

• “Maximum trust path length”.Since complete trust is
a rare phenomenon, the longer a trust propagation path
is, the more risk we will have. We can either use a
threshold to skip less trusted propagated trust or sim-
ply use a threshold to skip longer paths.

• “Social distance ordering”.In order to avoid referral
cycle, an agent propagates trust in breath first search
style. It does not propagate trust from agents with
longer social distance to agents with shorter social dis-
tance.

4.4. Trust based Query

Trust based query in emergence interpretation is similar
to that in referral network. There are two important issues:
“how an agent selects a set of agents for consultation” and
“how an agent answers a consultation”.

In a query activity, an agent needs to control search com-
plexity and avoid cycles. Instead of delegating query to
other agents through query flooding, referral network ap-
proach lets the consulting agent initiate all communications.
Singh et al. suggested an approach with knowing expected
belief [15, 20], and our previous work [5] suggested a ma-
jority consensus approach without knowing expected belief.
A consulting policy should consider how to select the agents
to be consulted and how to query them in an appropriate or-
der [17].

Upon receiving a consultation, an agent responds based
on its reply policy. The reply can be the agent’s real belief,
or its recommendation to other agents, or both. Normally
only strongly believed beliefs can be returned. The recom-
mended agents can be further filtered based on their rele-
vancy to the query and their RET value [20, 5, 17].

4.5. Trust based Belief Aggregation

Belief aggregation depends on the consulted beliefs re-
trieved by trust based query and the propagated DET de-
rived by trust propagation. We can use the aggregation func-
tions in section 2.3.2 to derive the estimated belief.

4.6. Emergence Properties

The observed emergence properties are mainly trust net-
work graph structure properties:

• Degree distribution.Guha et al. [13] reported that the
indegree and outdegree distribution of trust network in
Epinoins.com follows power law, but its exponent pa-
rameter is not common in comparison with the other
graph structures on the Web. The observation shows
that experts are not very popular. Our hypothesis for
this difference is: even experts may have quite a lot of
ignorance while people may use different trust evalua-
tion criteria.

• Bow tie structure.Guha et al. [13] also reported that
trust network contains strongly connected component
(SCC) and forms a bow tie structure [2]. Our hypothe-
sis for this property is: experienced users not only have
a lot of domain knowledge but know the other helpful
experts; therefore, they are better trusted since they al-
ways offer good news; in addition, new users may start
by trusting the experienced users.

• Emergence of DET experts and RET experts. DET ex-
perts in trust network is essentially agents with high
indegree (an authority). They emerge when enough
agents in the network has positive experiences with
them. RET expertsin trust network are essentially
agents with high outdegree (a hub). They emerge when
many agents need referral services, i.e., they can’t af-
ford the cost of memorizing all useful domain experts.

• Convergence of trust propagation graph.We propose
a hypothesis that: for each agent, given enough experi-
ence and assuming static agent knowledge, their trust
propagation graph will converge to a stable state.

5. Evaluation Model

In order to compare and benchmark the different inter-
pretations of trust network inference, we propose a evalua-
tion model, which is depicted in figure 8. In general, eval-
uation runs in the three consecutive steps:configuration,
which initializes the agent society;inference, which allows
the analyzer to simulate agent query activities; andevalua-
tion, which reports the statistics of the simulation results.
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5.1. Evaluation Metrics

We use evaluation metrics to characterize the distribu-
tion of data and the performance of operations in trust net-
work inference.

5.1.1. Belief quality. The quality of a real beliefbeliefio

is derived by comparing it with the corresponding expected
belief φio. For Boolean trust, table 3 shows three types
of exclusive belief qualities: “correct”, “error”, and “igno-
rance”.

beliefio true false unknown
φio

true correct error error
false error correct error
unknown ignorance ignorance correct

Table 3. Belief quality

5.1.2. Belief vector quality. Given a vector of beliefs, e.g.
an agent’s knowledge base, we use three features to charac-

terize its quality: (i)P (I) – the proportion of beliefs with
“ignorance” quality, (ii)P (C) – the proportion of beliefs
with “correct” quality, and (3)P (E)– the proportion of be-
liefs with “error” quality. The two extremes ofP (I) are
“knowledgeable” and “ignorant”; those ofP (C) are “wise”
and “unwise”; and those ofP (E) are “deceptive” and “hon-
est”. These three features are related by equation 21.

P (I) + P (C) + P (E) = 1 (21)

5.1.3. Belief matrix distribution. Belief distribution may
directly affect the result of majority consensus, and there-
fore affect the trust evolution result. The distribution of a
belief matrixB can be evaluated by the following bench-
marks: (i) matrix level benchmarks, such as sparsity, which
shows the proportion of ignorance inB (see equation 22);
and (ii) vector level benchmarks, such as the distribution
of P (I), P (C), P (C|E). We can evaluate both row vec-
tor and column vector of B: the quality of a row vector in
B is calleduser quality, which refers to the belief distribu-
tion of an agent’s knowledge base; the quality of a column
vector inB is calledreview quality, which refers to the dis-



tribution of beliefs about a certain object.

sparsity(B) =
number of “ignorance′′ beliefs

number of all beliefs
(22)

5.1.4. Query distribution. A query activity selects an
agent to derive beliefs about an object. A query queue is
composed of a sequence of pairs (agent, object). We can de-
rive query frequency distribution for agents and object.
In addition, we can analyze the co-occurrence distribu-
tion, so as to determine the dependency between agents and
objects.

5.1.5. Query result distribution. Given the query result,
we can evaluate the performance of trust network infer-
ence, e.g. “the quality of estimated beliefs”, and “how many
agents are consulted per query”. Richardson et al. [14] sug-
gestedprecisionand recall for static trust network. Their
benchmark shows how trust network helps agents to reach
correct belief in comparison with the case of agents hav-
ing global knowledge.

5.1.6. The convergence of trust network.Richardson et
al. [14] suggests that a trust network converges when the
trust knowledge of all agents stops changing. However, this
criterion might not fit for dynamic systems. Based on emer-
gence interpretation, we hypothesis that a trust network
converges when the distribution of query result converges.
Specifically, when the average accuracy of query result con-
verges, we believe the trust network will converge.

5.1.7. Trust network graph structure. Guha et al. [13]
pointed out two important graph structure properties:de-
gree distributionandstrongly connected component. We ex-
pect to observe Zipf’s/Power distribution in both in-degree
and out-degree, and Bow-tie structure in the evolved trust
network.

5.2. System Configuration

Our evaluation model intends to provide both real world
data and synthesized data to benchmark trust network infer-
ence interpretations.

5.2.1. Belief matrix. It is difficult to obtain an individ-
ual’s beliefs in real world because of privacy issues. How-
ever, many reputation systems collect the overall consumer
ratings over objects like products, services, and websites.
They may also supply some anonymous personal ratings
(e.g. Bizrate.com, Amazon.com, and IMDB.com), or some
named ratings with textual reviews (e.g. Epinions.com).
Therefore, real world belief data exists in two forms: (1)
the average and the distribution of beliefs over an object;
(2) the complete belief matrix.

We synthesize a belief matrix in two steps. (1) Gener-
ate vector quality. Vector quality can be directly obtain from

real world data, or synthesized from distribution. We deter-
mine the three features in a certain order: first, letP (X) be
the primary feature and follow a certain distribution, such
as normal distribution. Second, letP (Y |X) follow a differ-
ent distribution and computeP (Y ) = P (Y |X)∗P (X). Fi-
nally computeP (Z) using equation 21. In this approach,
any one ofP (I), P (C), P (E) can be the primary feature,
and both Zipf/Pareto distribution and normal distribution
can be used. (2) Initialize belief matrix with vector qual-
ity. We can randomly assign values for each cell in belief
matrix without violating the distribution given by the vec-
tor quality.

5.2.2. Knows matrix. Real world “knows” knowl-
edge can be obtained from many places, such as ad-
dress book of e-mail clients, social network websites
(e.g. orkut.com, Epinions.com), online FOAF files (we
have crawled millions of them), or web scraping re-
sults (e.g. co-author relation from DBLP).

The synthesized “knows” matrix could be a random
network, a scale-free network, or a small world network
[4]. Moreover, spatial distance can be used to initialize a
“knows” matrix, where agents know one another only when
they are geographically close enough.

5.2.3. Trust matrix. Currently, the real world trust knowl-
edge is collected by websites, such as the “web of trust” at
Epinions.com and the trust network at advogato.org. Pri-
vacy issues make most of these data not publicly available.

The synthesized trust matrix comes from two sources: (i)
the discovered social networks may imply certain trust re-
lation between individuals, so we may combine these so-
cial networks and use the implied trust to create a trust net-
work; and (ii) we can also evolve trust network in emergent
way in P2P system, where no prior trust knowledge is re-
quired.

5.3. Query Queue Generation

After agent society has been configured, the analyzer can
simulate queries using pre-generated query queue, which is
a sequence of query activities. A simple approach is to uni-
formly select the agent and object and then form a query.
We can also select agents and object using certain distribu-
tions. Based on Kittock’s argument of non-uniform interac-
tion probability [9], we can select agents by their interac-
tion distribution. Also, for each agent, we can select objects
by the agent’s interest vector.

6. Experiments

Our ongoing experiments consist of three parts. (i) A
general purpose trust network evaluation package called
“TrustWeb”. This will provide both native java interface for



local simulation, and web service based interface for dis-
tributed simulation and application. (ii) Evaluation results
for trust evolution and discovery. We will show how trust
network emerges through evolution, and the role of con-
text, restriction, and query distribution in this process. We
will also show how trust network can be discovered from
real world data. (iii) Evaluation results for trust propagation,
trust based query and belief aggregation. We will show how
knowledge distribution, query distribution and the structure
of trust network affect the query result distribution.

7. Conclusion

Trust networks are critical for knowledge sharing in
open, dynamic and large-scale agent societies on the (Se-
mantic) Web. Trust can be used to guide queries effectively
to the most helpful agents and adopt knowledge selectively
from multiple sources. These advantages have led to vari-
ous interpretations of trust network inference.

In this paper, we study the data and computational mod-
els involved in trust network inference and propose an eval-
uation model to compare the effectiveness of existing in-
terpretations. We propose a genericdata modelthat enu-
merates the inputs (context, restriction), the output (the es-
timated belief) and the target (the expected belief) of trust
network inference. The data model details why trust is do-
main specific in the real world and identifies several types
of trust in knowledge sharing context. We also summarize
primitive operations in a genericcomputational model, and
compare existing interpretations of trust network inference,
based on graph theory, referral network and emergence. Our
emergence interpretation enables agents to both discover
and evolve trust knowledge for trust based operations. We
are testing our evaluation model over these interpretations
using both real world and synthetic data. This will in turn fa-
cilitate the adoption of trust network inference by real world
applications in various domains.
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