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ABSTRACT

We leverage the idea of a statistical ensemble to improve
the quality of quantum annealing based binary compressive
sensing. Since executing quantum machine instructions on a
quantum annealer can result in an excited state, rather than
the ground state of the given Hamiltonian, we use different
penalty parameters to generate multiple distinct quadratic
unconstrained binary optimization (QUBO) functions whose
ground state(s) represent a potential solution of the origi-
nal problem. We then employ the attained samples from
minimizing all corresponding (different) QUBOs to estimate
the solution of the problem of binary compressive sensing.
Our experiments, on a D-Wave 2000Q quantum processor,
demonstrated that the proposed ensemble scheme is notably
less sensitive to the calibration of the penalty parameter that
controls the trade-off between the feasibility and sparsity of
recoveries.

Index Terms— Compressive Sensing, Quantum Anneal-
ing, Quantum Signal Processing, Sparse Recovery

1. INTRODUCTION

Compressive sensing (a.k.a. compressed sensing, compres-
sive sampling or sparse sampling) is a recent sensing ap-
proach that exploits the sparsity of signals through optimiza-
tion methods and reconstructs sparse (and compressible)
signals from far fewer samples than the imposed rate by the
sampling theorem [1, 2, 3, 4]. From an application point of
view, compressive sensing has demonstrated outstanding per-
formance where: (a) we are restricted by the factor of energy
consumption on the sensing side (e.g., wireless sensor net-
works); (b) we are limited to using relatively few sensors (like
hyper-spectral wavelengths); (c) sensing is time-consuming
(namely medical imaging); or (d) measurement/sensing is
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too expensive (e.g., high-speed analog-to-digital-convertors)
[5, 6].

The original problem of compressive sensing (a.k.a. the
`0-norm sparse recovery) aims to recover a sparse signal x ∈
RN from a given measurement vector y ∈ Rm such that
y = Ax and the measurement matrix A ∈ Rm×N with
m � N. This problem can have infinitely many solutions,
and compressive sensing guarantees the uniqueness of sparse
solutions under various conditions [7, 8, 4].

Let ‖x‖0 denotes the sparsity level of x (i.e., the number
of nonzero entries of x). We can represent the ultimate goal
of compressive sensing as

min
x∈RN

‖x‖0 s.t. y = Ax. (1)

This problem is NP-hard [9, 10, 11, 4]; therefore, one needs
to apply convex (or non-convex) relaxations or greedy algo-
rithms for efficient sparse recovery in the realm of classical
computing [8, 5, 4]. It is possible to cast the original prob-
lem of compressive sensing, shown in (1), to the Boolean
satisfiability problem (SAT) [11] and take advantage of mod-
ern SAT solvers; however, SAT-based compressive sensing
requires notably more computational resources, compared to
the convex optimization methods (e.g., the `1-norm sparse re-
covery techniques).

Restricting the elements of x to take their values from
{0, 1} leads to a discrete optimization problem—so-called bi-
nary compressive sensing (BCS)—that is more challenging
compared to the standard (i.e., continuous) compressive sens-
ing [10, 11]. As an illustration, we cannot directly apply cur-
rently available greedy algorithms to recover sparse binary
(and more generally discrete) sparse signals. In the same way,
we need to embed additional constraints to adopt the convex
optimization techniques (e.g., the `1-norm minimization) for
the recovery of sparse binary/discrete signals.

The standard compressive sensing technique assumes that
measurements come from noiseless sources, an assumption
that is invalid in real-world applications. For handling noisy
measurements, we can apply the idea of penalty methods and



reformulate problem (1), for binary signals, as

min
x∈{0,1}N

‖y–Ax‖22 + λ‖x‖0, (2)

where the penalty parameter λ ∈ [0,+∞) controls the trade-
off between the feasibility and sparsity of solutions [4, 10].

We can employ quantum annealers to directly address the
`0-norm problem of BCS, shown in (2) [10, 12]. In prac-
tice, however, technological barriers in manufacturing phys-
ical quantum annealers (such as noise and decoherence) re-
duce the recovery accuracy [13]. Furthermore, the perfor-
mance of the quantum annealing based BCS is significantly
sensitive to the optimality of the penalty parameter that bal-
ances the feasibility and sparsity of results, making finding an
optimum penalty parameter is nontrivial [12]. In this study,
we leverage the idea of using a statistical ensemble to advance
quantum annealing based binary compressive sensing.

2. QUANTUM ANNEALING BASED BCS

Quantum annealing (QA) is a meta-heuristic that applies ad-
justable quantum fluctuations to problems and can outper-
form thermal annealing, a.k.a. simulated or classical anneal-
ing [14, 15, 13]. A quantum annealer is a type of adiabatic
quantum computer that can sample from the ground state(s) of
a given Ising Hamiltonian at cryogenic temperatures in near-
constant time [14, 16, 13]. For instance, the D-Wave quantum
annealer receives coefficients of a quadratic unconstraint bi-
nary optimization (QUBO) form as an executable quantum
machine instruction (QMI), and returns the ground state of
the following quadratic objective function:

EQUBO(x) =

N∑
i≤j

xiQijxj , (3)

where x ∈ {0, 1}N , N denotes the number of quantum bits
(qubits), and diagonal and off-diagonal entries of Q represent
linear and quadratic coefficients, respectively [12].

To solve a problem on a D-Wave quantum processor we
need to define a QUBO form (or its equivalent Ising Hamilto-
nian) whose ground state represents the optimum solution for
the original problem [12, 17]. In our previous work [10], we
showed how to cast problem (2) to (3) via:

Qii = λ+
∑
l

Ali (−2yl +Ali) (4)

and
Qij = 2

∑
l

AliAlj . (5)

3. ENSEMBLE QA-BASED BCS

Although quantum annealers can draw samples from the
ground state(s) of a given Ising Hamiltonian in near-constant

time, the current generation of the quantum annealers have
limitations that not only restrict the process of mapping prob-
lems into an executable quantum machine instruction but also
lower the quality of results. These limitations include, but are
not limited to, the sparse connectivity of the qubits, noise, de-
coherence, and limits on the coefficients’ range and precision
[13, 12].

In addition, one needs to find a proper value of the penalty
parameter λ prior to applying Eq. (4) and (5) for casting a
given BCS problem to a corresponding quantum machine in-
struction that can be executed by the quantum annealers. In
practice, calibrating this penalty parameter is challenging, and
can become even intractable [18, 19, 20]. The penalty param-
eter λ specifies the amount of shrinkage in Eq. (2). When
λ → 0 the number of eliminated parameters approaches zero
(here, ‖x‖0 → N ). Conversely, when λ → +∞, more pa-
rameters are eliminated (here, ‖x‖0 → 0).

In this study, instead of attempting to find the optimum
value for λ, which can be impractical in many real-world
applications, we relax the mapping process to take multiple
penalty parameters that are not necessarily optimum. Let

Λ = {λ1, λ2, . . . , }

be the set of different penalty parameters that we use for a
given problem, and let

H = {H1, H2, . . . }

denotes the corresponding Ising Hamiltonians that we obtain
from applying Eq. (4) and (5).

After executing all (different) corresponding quantum ma-
chine instructions for a given problem, we aggregate the re-
sulting samples and look at each element of the samples as
a binary random variable that follows the Bernoulli distribu-
tion. Let

X = {x1,x2, . . . }
represent the ground states of corresponding Hamiltonians in
H attained by a quantum annealer. We adopt the idea of en-
semble quantum annealing [21] and estimate the optimum so-
lution, denoted by x̃, as

x̃i =

 1

n

n∑
j=1

xj
i

 , for i = 1, 2, . . . , N, (6)

where n denotes the number of recoveries in X. Since we
assume that the sparsest solution of the given BCS problem is
unique, when |H| → +∞, we can expect that the majority of
the ground states will be identical to the sparsest solution of
the original problem.

4. EXPERIMENT RESULTS

We employed a D-Wave 2000Q quantum processor (located
at Burnaby, British Columbia) for running our experiments.



The current generation of the D-Wave quantum annealers in-
cludes more than 2,000 qubits; nevertheless, owing to the
sparse connectivity of qubits, they are limited to cliques of
size at most 63. Hence, we used random benchmark BCS
problems of size N = 60 [10, 12] in this study. The problem
set includes 50 random 5-sparse binary signals with corre-
sponding measurement vectors and coding matrices for m =
30, 40 and 50. To avoid the impact of embedding (i.e., chain-
ing multiple physical qubits for representing virtual qubits
with higher connectivity) in our evaluations, for all test in-
stances, we used a fixed embedding of a clique of size 60 on
the current working graph of the D-Wave QPU. In the same
manner, we set the chaining-strength of all problem embed-
dings to 1.5.

In this experiment, we requested 1,000 samples/reads for
all QMIs. After retrieving raw samples from a D-Wave QPU,
we used the majority voting scheme for remediating broken
chains. We also applied SQC [22, 12, 23], as a post-quantum
error correction scheme, on all samples and used the best sam-
ple (sample with lowest energy value) as the recovered binary
signal, denoted by x̃. For every recovery, we used

e =
‖x− x̃‖22

N

to measure the recovery error. Table 1 displays the minimum,
maximum, average, and variance of recovery errors for QA-
based BCS with different penalty parameters (λ), and com-
pares the results with the proposed ensemble QA-based BCS,
where Λ = {12, 14, 20}, for m = 30, 40 and 50. Table 2
presents the sparsity rate of the recovered 5-sparse binary sig-
nals. Experiment results reveal that the proposed ensemble
QA-based compressive sensing is notably less sensitive to the
calibration of the penalty parameter.

5. DISCUSSION

The original problem of compressive sensing in sparse re-
covery (i.e., the `0-norm sparse recovery) is NP-hard and
restricting the elements of the original (sparse) signal to
take their values from {0, 1} leads to a discrete optimization
problem—so-called binary compressive sensing (BCS)—that
is significantly more challenging, compared to the standard
(continuous) compressive sensing. One can cast the origi-
nal problem of BCS to minimize a quadratic unconstrained
binary optimization (QUBO) form, which is tractable by
quantum annealers, whose ground state represents a solution
to the given problem of BCS.

The performance of the sparse recovery in QA-based BCS
is highly sensitive to the penalty parameter that balances the
feasibility and sparsity of recoveries. Calibrating the penalty
parameter is nontrivial—in several cases, it can become in-
tractable. In this study we introduced the technique of an
ensemble QA-based BCS that uses the idea of the statistical
ensemble to improve the quality of QA-based BCS.

Table 1. Minimum, maximum, average and variance
of recovery errors using QA-based BCS (with λ =
12, 14, 16, 18, 20) and ensemble QA-based BCS (with Λ =
{12, 16, 20}).

m penalty min max mean var(10−4)

30

λ = 12 0 0.12 0.044 7.0
λ = 14 0 0.10 0.039 6.3
λ = 16 0 0.08 0.036 6.2
λ = 18 0 0.10 0.037 6.2
λ = 20 0 0.08 0.039 5.6
Λ = {12, 16, 20} 0 0.08 0.036 6.2

40

λ = 12 0 0.07 0.016 2.4
λ = 14 0 0.07 0.015 2.9
λ = 16 0 0.07 0.015 2.8
λ = 18 0 0.07 0.016 3.2
λ = 20 0 0.10 0.021 4.3
Λ = {12, 16, 20} 0 0.07 0.014 2.9

50

λ = 12 0 0.05 0.006 1.3
λ = 14 0 0.03 0.005 0.9
λ = 16 0 0.03 0.005 0.9
λ = 18 0 0.03 0.005 1.0
λ = 20 0 0.03 0.006 1.1
Λ = {12, 16, 20} 0 0.03 0.005 0.9

Table 2. Minimum, maximum, average and variance of spar-
sity rates using QA-based BCS (with λ = 12, 14, 16, 18, 20)
and ensemble QA-based BCS (with Λ = {12, 16, 20}).

m penalty min max mean var

30

λ = 12 1 11 5.42 4.80
λ = 14 1 10 5.04 4.24
λ = 16 1 9 4.70 3.93
λ = 18 1 8 4.28 3.92
λ = 20 0 8 3.90 3.65
Λ = {12, 16, 20} 1 9 4.70 3.93

40

λ = 12 3 7 5.00 1.00
λ = 14 3 7 4.82 0.87
λ = 16 3 6 4.72 0.84
λ = 18 2 6 4.50 0.89
λ = 20 1 6 4.08 1.19
Λ = {12, 16, 20} 3 6 4.70 0.81

50

λ = 12 4 6 5.18 0.19
λ = 14 4 6 5.08 0.15
λ = 16 4 6 5.06 0.18
λ = 18 4 6 5.00 0.16
λ = 20 4 6 4.98 0.18
Λ = {12, 16, 20} 4 6 5.06 0.18

Since executing quantum machine instructions on the
quantum annealers can result in an excited state, rather than
the ground state of the given Ising Hamiltonian, we use differ-
ent penalty parameters to generate multiple distinct QUBOs



whose ground state(s) represent a potential solution of the
original problem. We then employ the attained samples from
minimizing all corresponding (different) QUBOs to estimate
the solution of the original problem of binary compressive
sensing. Our experiments, on a D-Wave 2000Q quantum
processor, demonstrated that the proposed ensemble quantum
annealing approach is significantly less sensitive to the cali-
bration of the penalty parameter λ. It is worth highlighting
that the uniqueness of the (sparse) solution is necessary for
a successful recovery in our proposed ensemble QA-based
BCS.

6. REFERENCES

[1] Emmanuel Candes, Justin Romberg, and Terence Tao,
“Robust uncertainty principles: Exact signal reconstruc-
tion from highly incomplete frequency information,”
arXiv preprint math/0409186, 2004.

[2] David L Donoho et al., “Compressed sensing,” IEEE
Transactions on information theory, vol. 52, no. 4, pp.
1289–1306, 2006.

[3] Emmanuel Candes and Terence Tao, “Near optimal sig-
nal recovery from random projections: Universal encod-
ing strategies?,” arXiv preprint math/0410542, 2004.

[4] Seyedahmad Mousavi, Mohammad Mehdi Rezaee
Taghiabadi, and Ramin Ayanzadeh, “A survey on com-
pressive sensing: Classical results and recent advance-
ments,” arXiv preprint arXiv:1908.01014, 2019.

[5] Meenu Rani, SB Dhok, and RB Deshmukh, “A system-
atic review of compressive sensing: Concepts, imple-
mentations and applications,” IEEE Access, vol. 6, pp.
4875–4894, 2018.

[6] Ramin Ayanzadeh, Milton Halem, and Tim Finin,
“Compressive geospatial analytics,” AGUFM, vol.
2019, pp. IN53B–0733, 2019.

[7] Richard Baraniuk, Mark Davenport, Ronald DeVore,
and Michael Wakin, “A simple proof of the restricted
isometry property for random matrices,” Constructive
Approximation, vol. 28, no. 3, pp. 253–263, 2008.

[8] Simon Foucart and Holger Rauhut, A Mathematical In-
troduction to Compressive Sensing, Springer Science &
Business Media, 2013.

[9] Shanmugavelayutham Muthukrishnan et al., “Data
streams: Algorithms and applications,” Foundations
and Trends in Theoretical Computer Science, vol. 1, no.
2, pp. 117–236, 2005.

[10] Ramin Ayanzadeh, Seyedahmad Mousavi, Milton
Halem, and Tim Finin, “Quantum annealing based

binary compressive sensing with matrix uncertainty,”
arXiv preprint arXiv:1901.00088, 2019.

[11] Ramin Ayanzadeh, Milton Halem, and Tim Finin,
“SAT-based compressive sensing,” arXiv preprint
arXiv:1903.03650, 2019.

[12] Ramin Ayanzadeh, Leveraging Artificial Intelligence
to Advance Problem-Solving with Quantum Annealers,
Ph.D. thesis, University of Maryland, Baltimore County,
May 2020.

[13] Ramin Ayanzadeh, Milton Halem, and Tim Finin, “Re-
inforcement quantum annealing: A hybrid quantum
learning automata,” Scientific Reports, vol. 10, no. 1,
pp. 1–11, 2020.

[14] Tadashi Kadowaki and Hidetoshi Nishimori, “Quantum
annealing in the transverse ising model,” Physical Re-
view E, vol. 58, no. 5, pp. 5355, 1998.

[15] Arnab Das and Bikas K Chakrabarti, “Colloquium:
Quantum annealing and analog quantum computation,”
Reviews of Modern Physics, vol. 80, no. 3, pp. 1061,
2008.

[16] Ramin Ayanzadeh, Milton Halem, John Dorband, and
Tim Finin, “Quantum-assisted greedy algorithms,”
arXiv preprint arXiv:1912.02362, 2019.

[17] Ramin Ayanzadeh, Milton Halem, and Tim Finin,
“SAT++: A quantum programming paradigm,” Univer-
sity of Maryland, Baltimore County, 2019.

[18] Hui Zou, Trevor Hastie, Robert Tibshirani, et al., “On
the degrees of freedom of the lasso,” The Annals of
Statistics, vol. 35, no. 5, pp. 2173–2192, 2007.

[19] Emmanuel Candes, Terence Tao, et al., “The dantzig se-
lector: Statistical estimation when p is much larger than
n,” The annals of Statistics, vol. 35, no. 6, pp. 2313–
2351, 2007.

[20] Peter J Bickel, Ya’acov Ritov, Alexandre B Tsybakov,
et al., “Simultaneous analysis of lasso and dantzig se-
lector,” The Annals of Statistics, vol. 37, no. 4, pp. 1705–
1732, 2009.

[21] Ramin Ayanzadeh, John Dorband, Milton Halem, and
Tim Finin, “Ensemble quantum annealing,” University
of Maryland, Baltimore County, 2019.

[22] John E Dorband, “A method of finding a lower en-
ergy solution to a qubo/ising objective function,” arXiv
preprint arXiv:1801.04849, 2018.

[23] Ramin Ayanzadeh, John Dorband, Milton Halem, and
Tim Finin, “Post-quantum error correction for quantum
annealers,” University of Maryland, Baltimore County,
2019.


