paper: Understanding and representing the semantics of large structured documents

July 23rd, 2018

Understanding and representing the semantics of large structured documents

 

Muhammad Mahbubur Rahman and Tim Finin, Understanding and representing the semantics of large structured documents, Proceedings of the 4th Workshop on Semantic Deep Learning (SemDeep-4, ISWC), 8 October 2018.

 

Understanding large, structured documents like scholarly articles, requests for proposals or business reports is a complex and difficult task. It involves discovering a document’s overall purpose and subject(s), understanding the function and meaning of its sections and subsections, and extracting low level entities and facts about them. In this research, we present a deep learning based document ontology to capture the general purpose semantic structure and domain specific semantic concepts from a large number of academic articles and business documents. The ontology is able to describe different functional parts of a document, which can be used to enhance semantic indexing for a better understanding by human beings and machines. We evaluate our models through extensive experiments on datasets of scholarly articles from arXiv and Request for Proposal documents.


2018 Mid-Atlantic Student Colloquium on Speech, Language and Learning

April 11th, 2018

2018 Mid-Atlantic Student Colloquium on Speech, Language and Learning

The 2018 Mid-Atlantic Student Colloquium on Speech, Language and Learning (MASC-SLL) is a student-run, one-day event on speech, language & machine learning research to be held at the University of Maryland, Baltimore County  (UMBC) from 10:00am to 6:00pm on Saturday May 12.  There is no registration charge and lunch and refreshments will be provided.  Students, postdocs, faculty and researchers from universities & industry are invited to participate and network with other researchers working in related fields.

Students and postdocs are encouraged to submit abstracts describing ongoing, planned, or completed research projects, including previously published results and negative results. Research in any field applying computational methods to any aspect of human language, including speech and learning, from all areas of computer science, linguistics, engineering, neuroscience, information science, and related fields is welcome. Submissions and presentations must be made by students or postdocs. Accepted submissions will be presented as either posters or talks.

Important Dates are:

  • Submission deadline (abstracts): April 16
  • Decisions announced: April 21
  • Registration opens: April 10
  • Registration closes: May 6
  • Colloquium: May 12

paper: Cleaning Noisy Knowledge Graphs

January 27th, 2018

Cleaning Noisy Knowledge Graphs

Ankur Padia, Cleaning Noisy Knowledge Graphs, Proceedings of the Doctoral Consortium at the 16th International Semantic Web Conference, October 2017.

My dissertation research is developing an approach to identify and explain errors in a knowledge graph constructed by extracting entities and relations from text. Information extraction systems can automatically construct knowledge graphs from a large collection of documents, which might be drawn from news articles, Web pages, social media posts or discussion forums. The language understanding task is challenging and current extraction systems introduce many kinds of errors. Previous work on improving the quality of knowledge graphs uses additional evidence from background knowledge bases or Web searches. Such approaches are diffuclt to apply when emerging entities are present and/or only one knowledge graph is available. In order to address the problem I am using multiple complementary techniques including entitylinking, common sense reasoning, and linguistic analysis.

 


new paper: Discovering Scientific Influence using Cross-Domain Dynamic Topic Modeling

November 17th, 2017

Discovering Scientific Influence using Cross-Domain Dynamic Topic Modeling

Jennifer Sleeman, Milton Halem, Tim Finin and Mark Cane, Discovering Scientific Influence using Cross-Domain Dynamic Topic Modeling, International Conference on Big Data, IEEE, December 2017.

We describe an approach using dynamic topic modeling to model influence and predict future trends in a scientific discipline. Our study focuses on climate change and uses assessment reports of the Intergovernmental Panel on Climate Change (IPCC) and the papers they cite. Since 1990, an IPCC report has been published every five years that includes four separate volumes, each of which has many chapters. Each report cites tens of thousands of research papers, which comprise a correlated dataset of temporally grounded documents. We use a custom dynamic topic modeling algorithm to generate topics for both datasets and apply crossdomain analytics to identify the correlations between the IPCC chapters and their cited documents. The approach reveals both the influence of the cited research on the reports and how previous research citations have evolved over time. For the IPCC use case, the report topic model used 410 documents and a vocabulary of 5911 terms while the citations topic model was based on 200K research papers and a vocabulary more than 25K terms. We show that our approach can predict the importance of its extracted topics on future IPCC assessments through the use of cross domain correlations, Jensen-Shannon divergences and cluster analytics.


W3C Recommendation: Time Ontology in OWL

October 26th, 2017

W3C Recommendation: Time Ontology in OWL

The Spatial Data on the Web Working Group has published a W3C Recommendation of the Time Ontology in OWL specification. The ontology provides a vocabulary for expressing facts about  relations among instants and intervals, together with information about durations, and about temporal position including date-time information. Time positions and durations may be expressed using either the conventional Gregorian calendar and clock, or using another temporal reference system such as Unix-time, geologic time, or different calendars.


2018 Ontology Summit: Ontologies in Context

September 12th, 2017

2018 Ontology Summit: Ontologies in Context

The OntologySummit is an annual series of online and in-person events that involves the ontology community and communities related to each year’s topic. The topic chosen for the 2018 Ontology Summit will be Ontologies in Context, which the summit describes as follows.

“In general, a context is defined to be the circumstances that form the setting for an event, statement, or idea, and in terms of which it can be fully understood and assessed. Some examples of synonyms include circumstances, conditions, factors, state of affairs, situation, background, scene, setting, and frame of reference. There are many meanings of “context” in general, and also for ontologies in particular. The summit this year will survey these meanings and identify the research problems that must be solved so that contexts can succeed in achieving the full understanding and assessment of an ontology.”

Each year’s Summit comprises of a series of both online and face-to-face events that span about three months. These include a vigorous three-month online discourse on the theme, and online panel discussions, research activities which will culminate in a two-day face-to-face workshop and symposium.

Over the next two months, there will be a sequence of weekly online meetings to discuss, plan and develop the 2018 topic. The summit itself will start in January with weekly online sessions of invited speakers. Visit the the 2018 Ontology Summit site for more information and to see how you can participate in the planning sessions.


New paper: Cognitive Assistance for Automating the Analysis of the Federal Acquisition Regulations System

September 5th, 2017

Cognitive Assistance for Automating the Analysis of the Federal Acquisition Regulations System

Srishty Saha and Karuna Pande Joshi, Cognitive Assistance for Automating the Analysis of the Federal Acquisition Regulations System, AAAI Fall Symposium on Cognitive Assistance in Government and Public Sector Applications, AAAI Press, November 2017

Government regulations are critical to understanding how to do business with a government entity and receive other bene?ts. However, government regulations are also notoriously long and organized in ways that can be confusing for novice users. Developing cognitive assistance tools that remove some of the burden from human users is of potential bene?t to a variety of users. The volume of data found in United States federal government regulation suggests a multiple-step approach to process the data into machine readable text, create an automated legal knowledge base capturing various facts and rules, and eventually building a legal question and answer system to acquire understanding from various regulations and provisions. Our work discussed in this paper represents our initial efforts to build a framework for Federal Acquisition Regulations System (Title 48, Code of Federal Regulations) in order to create an efficient legal knowledge base representing relationships between various legal elements, semantically similar terminologies, deontic expressions and cross-referenced legal facts and rules.


New paper: Generating Digital Twin models using Knowledge Graphs for Industrial Production Lines

September 2nd, 2017

Generating Digital Twin models using Knowledge Graphs for Industrial Production Lines

Agniva Banerjee, Raka Dalal, Sudip Mittal and Karuna Pande Joshi, Generating Digital Twin models using Knowledge Graphs for Industrial Production Lines, Workshop on Industrial Knowledge Graphs, co-located with the 9th International ACM Web Science Conference, 2017.

Digital Twin models are computerized clones of physical assets that can be used for in-depth analysis. Industrial production lines tend to have multiple sensors to generate near real-time status information for production. Industrial Internet of Things datasets are difficult to analyze and infer valuable insights such as points of failure, estimated overhead. etc. In this paper we introduce a simple way of formalizing knowledge as digital twin models coming from sensors in industrial production lines. We present a way on to extract and infer knowledge from large scale production line data, and enhance manufacturing process management with reasoning capabilities, by introducing a semantic query mechanism. Our system primarily utilizes a graph-based query language equivalent to conjunctive queries and has been enriched with inference rules.


UMBC Data Science Graduate Program Starts Fall 2017

June 16th, 2017

 

UMBC Data Science Graduate Programs

UMBC’s Data Science Master’s program prepares students from a wide range of disciplinary backgrounds for careers in data science. In the core courses, students will gain a thorough understanding of data science through classes that highlight machine learning, data analysis, data management, ethical and legal considerations, and more.

Students will develop an in-depth understanding of the basic computing principles behind data science, to include, but not limited to, data ingestion, curation and cleaning and the 4Vs of data science: Volume, Variety, Velocity, Veracity, as well as the implicit 5th V — Value. Through applying principles of data science to the analysis of problems within specific domains expressed through the program pathways, students will gain practical, real world industry relevant experience.

The MPS in Data Science is an industry-recognized credential and the program prepares students with the technical and management skills that they need to succeed in the workplace.

For more information and to apply online, see the Data Science MPS site.


New paper: A Question and Answering System for Management of Cloud Service Level Agreements

May 13th, 2017

Sudip Mittal, Aditi Gupta, Karuna Pande Joshi, Claudia Pearce and Anupam Joshi, A Question and Answering System for Management of Cloud Service Level Agreements,  IEEE International Conference on Cloud Computing, June 2017.

One of the key challenges faced by consumers is to efficiently manage and monitor the quality of cloud services. To manage service performance, consumers have to validate rules embedded in cloud legal contracts, such as Service Level Agreements (SLA) and Privacy Policies, that are available as text documents. Currently this analysis requires significant time and manual labor and is thus inefficient. We propose a cognitive assistant that can be used to manage cloud legal documents by automatically extracting knowledge (terms, rules, constraints) from them and reasoning over it to validate service performance. In this paper, we present this Question and Answering (Q&A) system that can be used to analyze and obtain information from the SLA documents. We have created a knowledgebase of Cloud SLAs from various providers which forms the underlying repository of our Q&A system. We utilized techniques from natural language processing and semantic web (RDF, SPARQL and Fuseki server) to build our framework. We also present sample queries on how a consumer can compute metrics such as service credit.


SemTk: The Semantics Toolkit from GE Global Research, 4/4

March 17th, 2017

The Semantics Toolkit

Paul Cuddihy and Justin McHugh
GE Global Research Center, Niskayuna, NY

10:00-11:00 Tuesday, 4 April 2017, ITE 346, UMBC

SemTk (Semantics Toolkit) is an open source technology stack built by GE Scientists on top of W3C Semantic Web standards.  It was originally conceived for data exploration and simplified query generation, and later expanded to a more general semantics abstraction platform. SemTk is made up of a Java API and microservices along with Javascript front ends that cover drag-and-drop query generation, path finding, data ingestion and the beginnings of stored procedure support.   In this talk we will give a tour of SemTk, discussing its architecture and direction, and demonstrate it’s features using the SPARQLGraph front-end hosted at http://semtk.research.ge.com.

Paul Cuddihy is a senior computer scientist and software systems architect in AI and Learning Systems at the GE Global Research Center in Niskayuna, NY. He earned an M.S. in Computer Science from Rochester Institute of Technology. The focus of his twenty-year career at GE Research has ranged from machine learning for medical imaging equipment diagnostics, monitoring and diagnostic techniques for commercial aircraft engines, modeling techniques for monitoring seniors living independently in their own homes, to parallel execution of simulation and prediction tasks, and big data ontologies.  He is one of the creators of the open source software “Semantics Toolkit” (SemTk) which provides a simplified interface to the semantic tech stack, opening its use to a broader set of users by providing features such as drag-and-drop query generation and data ingestion.  Paul has holds over twenty U.S. patents.

Justin McHugh is computer scientist and software systems architect working in the AI and Learning Systems group at GE Global Research in Niskayuna, NY. Justin attended the State University of New York at Albany where he earned an M.S in computer science. He has worked as a systems architect and programmer for large scale reporting, before moving into the research sector. In the six years since, he has worked on complex system integration, Big Data systems and knowledge representation/querying systems. Justin is one of the architects and creators of SemTK (the Semantics Toolkit), a toolkit aimed at making the power of the semantic web stack available to programmers, automation and subject matter experts without their having to be deeply invested in the workings of the Semantic Web.


SADL: Semantic Application Design Language

March 4th, 2017

SADL – Semantic Application Design Language

Dr. Andrew W. Crapo
GE Global Research

 10:00 Tuesday, 7 March 2017

The Web Ontology Language (OWL) has gained considerable acceptance over the past decade. Building on prior work in Description Logics, OWL has sufficient expressivity to be useful in many modeling applications. However, its various serializations do not seem intuitive to subject matter experts in many domains of interest to GE. Consequently, we have developed a controlled-English language and development environment that attempts to make OWL plus rules more accessible to those with knowledge to share but limited interest in studying formal representations. The result is the Semantic Application Design Language (SADL). This talk will review the foundational underpinnings of OWL and introduce the SADL constructs meant to capture, validate, and maintain semantic models over their lifecycle.

 

Dr. Crapo has been part of GE’s Global Research staff for over 35 years. As an Information Scientist he has built performance and diagnostic models of mechanical, chemical, and electrical systems, and has specialized in human-computer interfaces, decision support systems, machine reasoning and learning, and semantic representation and modeling. His work has included a graphical expert system language (GEN-X), a graphical environment for procedural programming (Fuselet Development Environment), and a semantic-model-driven user-interface for decision support systems (ACUITy). Most recently Andy has been active in developing the Semantic Application Design Language (SADL), enabling GE to leverage worldwide advances and emerging standards in semantic technology and bring them to bear on diverse problems from equipment maintenance optimization to information security.