APPROVAL SHEET

	Title of Thesis:
	Applying Policy Based Access Control and XML Digital Signatures for Security in Pervasive Computing Environments

	Name of Candidate:
	Mohinder Chopra

Master of Science, 2005

	Thesis and Abstract Approved:
	Dr. Timothy Finin

Professor

Department of Computer Science and Electrical Engineering

	Date Approved:

CURRICULUM VITAE

Name: Mohindersingh S Chopra

Permanent Address: 1138 Regina Drive, Apt I, Baltimore MD 21227.

Degree and Date to be conferred: M.S., 2005.

Date of Birth: 13th March, 1979.

Place of Birth: Mumbai (Bombay), India.

Collegiate Institutions attended:

· University of Mumbai, India

Bachelor of Engineering (Computer Science)

June 2001.

· University of Maryland, Baltimore County

Master of Science (Computer Science)

May 2005.

Major: Computer Science.
Professional Positions Held:
· Research Intern

Fujitsu Labs. Of America
College Park, Maryland USA.

Software Engineer
Patni Computers

Mumbai, India

ABSTRACT

	Title of Thesis:
	Applying Policy Based Access Control and XML Digital Signatures for Security in Pervasive Computing Environments

	Mohindersingh Chopra, Master of Science, 2005

	Thesis directed by:
	Dr. Timothy Finin

Professor

Department of Computer Science and Electrical Engineering

Security and access control are one of the major issues within pervasive computing environments such as Task Computing. There is a need of unobtrusive and flexible access control and access to services has to be restricted based on certain policies imposed by the organization (Fujitsu in this case). The dynamic nature of pervasive computing environments also requires the updating of policies on the fly.

REI developed at University of Maryland Baltimore County is an expressive and extensible language for describing different kinds of policies in a wide range of application domains such as security policies / privacy policies. The REI policy engine reasons over REI policies and domain knowledge to provide answers about current permissions and obligations of an entity dynamically. REI allows the dynamic change of policies on the fly through its provision of speech acts such as delegation.

Using Task Computing as a platform we have shown that REI can be used in highly pervasive and ubiquitous environments to provide access control decisions. These decisions are based on facts provided by the client, resource/service policies, shared policies and ontologies depicting the domain knowledge of the organization. In addition XML Digital Signatures are used to provide authentication and data integrity.

Applying Policy Based Access Control and XML Digital Signatures for Security in Pervasive Computing Environments.
By
Mohindersingh Chopra
Thesis submitted to the Faculty of the Graduate School

of the University of Maryland in partial fulfillment

of the requirements for the degree of

Master of Science

2005

Dedicated to

My

TABLE OF CONTENTS

Chapter

 Page
1. Introduction………………………………………………………………1

2. Task Computing…………………………………………………………13

3. REI………………………………………………………………………19
4. Related Work……………………………………………………………23
5. Motivation and Design………………………………………………….26
6. Implementation…………………………………………………………31
7. XML Digital Signatures………………………………………………...39
8. Conclusions……………………………………………………………..41
9. Future Work…………………………………………………………….43
10. References……………………………………………………………..46
Chapter 1
 Introduction

Pervasive Computing focuses on users and tasks rather than on computing devices and technology. They promise an environment that seamlessly supports users in accomplishing complex tasks without the user having to worry about the details of execution of these tasks. Computing devices range from traditional computers to small mobile devices such as cell phones and PDA’s.

 [image: image1.png]

Figure 1 Pervasive Computing

Traditional stand-alone computers and small networks rely on system-based controls to verify the identity of a person and authorize that person to use the computers services and resources. In pervasive computing environments however there is a lack of central control and their users are all not known in advance. Users in pervasive computing environments expect to access resources and services anytime and anywhere leading to serious security
risks and access control problems.

Task Computing [1] - for pervasive computing environment developed at Fujitsu Laboratories of America, College Park is a user oriented framework that lets users accomplish complex tasks on the fly from open, dynamic and distributed set of resources. All resources within Task Computing are realized as Services available to the Task Computing clients. The services can be discovered and executed using one of the Task Computing clients. Also services can be composed on the fly. The compositions can then be executed as atomic services or can be used for further compositions
Security and access control are one of the major issues within pervasive computing environments such as Task Computing. There is a need of unobtrusive and flexible access control and access to services has to be restricted based on certain policies imposed by the organization (Fujitsu in this case). The dynamic nature of pervasive computing environments also requires the updating of policies on the fly.

REI [3],[4] – developed at University of Maryland Baltimore County is an expressive and extensible language for describing different kinds of policies in a wide range of application domains such as security policies / privacy policies. The REI policy engine reasons over REI policies and domain knowledge to provide answers about current permissions and obligations of an entity dynamically. REI allows the dynamic change of policies on the fly through its
provision of speech acts such as delegation.

Using Task Computing as a platform we have shown that REI can be used in highly pervasive and ubiquitous environments to provide access control decisions. These decisions are based on facts provided by the client, resource/service policies, shared policies and ontologies depicting the domain knowledge of the organization. In addition XML Digital Signatures are used to provide authentication and data integrity.

 Chapter 2
Task Computing

Fujitsu is an information technology company with business that spans the entire range from chip design and manufacturing to integrated IT Solutions. Task Computing [1] is an application of Semantic Web and Web Services developed at Fujitsu that supports many goals shared by device manufacturers and IT Solution providers. Task Computing is a user oriented framework that reduces the gap between Tasks (what users want to do) and services available to the user. The framework considers dynamically changing pervasive environments with several computing devices and services and non-technical users with limited knowledge about this environment.

Task Computing presents users with simple tasks from the environment and allows them to execute these tasks. It also allows users to create more complex tasks using these simple tasks and guides them through the execution of these complex tasks. The complex tasks so created by the user can be reused like macros to create more complex tasks. In all these cases the user does not know or care about how the actual constituent tasks are executed or where they might be executed. The ultimate objective of Task Computing is to present to the user an abstract view of the services and devices that can be used in an ad-hoc manner by the user in order to execute tasks of arbitrary complexity.

Task Computing is comprised of four distinct layers [2]

Realization Layer: It is the bottom most layer that encompasses all the devices, applications, services, etc where all the functionality available to user originates

Service Layer: Service interface are employed to access all the functionality. Each service is associated with at least one semantic description. Services are abstraction of functionality in Task Computing universe and semantic descriptions are used to abstract the complexity of this functionality from the user and assist the user to employ these services in accomplishing complex and interesting tasks.

Middleware Layer: The middleware is in charge of discovering services, deciding how services can be composed, executing services and monitoring service execution. It also facilitates management tasks like creation and publishing of semantically described services.

Presentation Layer: This is the most important layer which uses the capabilities of the layers below in order to provide the user with a “Task” abstraction of what lies underneath. The presentation layer presents an environment where functionality can be dynamically created and executed to perform user tasks. Variety of clients referred to as Task Computing clients have been developed to support this layer.

General Architecture of Task Computing Environment

[image: image2.png]Task Computing Environment

Presentation Task Web-based
e @mng Applications. P

Widdleware Exccution & Service
Layer [Execution Monitoring| | Composition Management
Engine_ Engine Tools

“Semantic Semantic Semantic
Service Service Service
Service Descriptor Descriptior Description

Layer

Servll:e Servlce Serv\ce Service

Realization ‘
Layer Appncanon

Screenshot of Task Computing Environment desktop is shown below. STEER is a Web Server based Task Computing Client whose compose page is shown on the left. In each pair any service on the right side drop down can be combined with any service in the left side. The user chooses the services from drop down menu and clicks the execute button to execute the composition.

[image: image3.png]e I P e

The Task Computing framework is a framework that supports Task Computing by providing support for

· Workflow of Task Computing – Discovery followed by composition and execution.

· Semantic description of tasks and services

· Specification, Execution and Re-Usability of tasks by end-users

· Manipulation including creation and disposal of services by end-users

A Task Computing Environment in addition to Task Computing Framework will have the following

· One or more Task Computing Clients

· One or more Semantically Described Services.

· One or more Semantic Service Discovery Mechanisms

· One or more Service Controls

Example Scenario of using Task Computing

Showing and Sharing a Presentation

Alice enters a conference room that has the Task Computing Environment set up. Alice has her presentation on her PDA.

Alice executes the composition of “Select Local File” service present on her PDA and “View on Projector” service present in the conference room using the Task Computing Client (STEER) present on the PDA. This way there is no need for either the laptop or the projector to be connected using wires.

[image: image4.png]r - "STEER

i

|

‘ Control Web’
‘ > [weopage - [y
‘ ‘

L

o

Web Service Call Result UPnP Call Result
withnoinput (String) wihasting (Sting)
Local File’ “View on Projector”

Service Service

Chapter 3
 REI

REI [3],[4] policy specification language is an expressive language based on Semantic Web and the REI policy engine reasons over the REI policies and domain knowledge to provide decisions regarding positive and negative permissions and obligations to an individual in a policy domain dynamically. It includes specification for speech acts, policy analysis and conflict resolution. There is provision for remote policy management through speech acts such as delegation revocation, request and cancel. REI also includes conflict resolution specifications such as modality preference or priority assignments between policies or between individual rules of a policy.

REI is based on deontic concepts and includes constructs for rights, prohibitions, obligations and dispensations. The language is flexible enough to allow different kind of policies such as security policies, privacy policies etc. Domain knowledge can easily be incorporated when reasoning over these policies. As the policies could span across multiple domains there could be conflicts with the policies. REI provides two constructs to resolve conflicts mainly setting priority between policies or setting modality preferences.

For a decentralized control over the policies REI provides speech acts such as delegation, revocation, request and cancel. These allow the dynamic change of policies on the fly \which is very important in ubiquitous computing environments. Speech acts relevant to the
Task Computing Environment are explained below:-

Delegation:

A delegation allows an entity to give certain right to another entity or a set of entities. The delegation is checked against existing policies to determine if it is valid. If valid a new right is created. A delegation can be represented as

Delegate (Sender, Receiver, Right (Action, Condition) (has (Receiver, Right (Action, Condition))

Revocation

Revocation is the removal of right and acts as a prohibition. An individual can revoke rights based on the policies. Also an individual can revoke rights which he has himself delegated. A revocation can be represented as

Revoke (Sender, Receiver, Right (Action, Condition) (Revocation (Receiver, Right (Action, Condition))

REI policy language ontology is shown below

[image: image5.png]oy
T
B R T == [
s S pris Py) o
r T 1 —
e o e =) (o=)
i
= L = o
! = = P |
e R
= it oo
1 st |) | (o) (Gt
1 et e (e P
e i || i
e = : ; —
iy |) [z

REI Implementation

REI is implemented on top of FLORA and FOWL as shown in figure. REI provides a java interface through the YAJXB package.

XSB [6] is a research oriented, commercial grade Logic Programming system for UNIX and Windows-based platforms. In addition to providing the functionality of Prolog, XSB includes SLG resolution and the handling of Hilog terms. These facilities while seemingly simple significantly extend the capabilities beyond those of a typical prolog system.

The implementation details of REI can be shown diagrammatically as follows

[image: image6.png]t

REI

JAVA API

FOwWL

FLOI

FLORA [7] is a sophisticated object oriented knowledge base language and application development platform developed on top of XSB. It has a way to do meta-programming in style of Hilog and logical updates in style of Transaction Logic.

F-OWL is an ontology inference engine for the Web Ontology Owl (OWL) developed at the University of Maryland, Baltimore County. The inference mechanism is implemented using FLORA. Key features of F-OWL include the ability to reason with the ontology model defined by the latest standard OWL, consistency checking using axiomatic rules in FLORA and java interface.

 Chapter 4
Related Work

The Web Services Policy Framework (WS-Policy) [8] provides a general purpose model and corresponding syntax to describe and communicate the policies of a Web service. WS-Policy defines a framework and a model for the expressing the capabilities, requirements and general characteristics of entities in XML Web Service Based system.

The following example illustrates a policy:

<ws:Policy>

 <ws:ExactlyOne>

 <wsse:SecurityToken>

 <wsse:TokenType>wsse:Kerberosv5TGT</wsse:TokenType>

 </wsse:SecurityToken>

 <ws:ExactlyOne>

</ws:Policy>

The above policy can be used for authentication. The policy states that a valid invocation of the web service would contain exactly one security token whose type is Kerberos. These policies are expressed in XML and say what kinds of credentials/certificates are required. Our policies on the other hand can do much more efficient reasoning using REI Engine and policies expressed in OWL.
XML-Based Specification for Web Services Document Security [9] presents an XML-based specification language which incorporates content and context based requirements for documents in XML-based Web Services. It uses the Role Based Access Control model which simplifies authorization administration by assigning permissions to users through roles. Although it relates roles to permissions there is no way to dynamically change these roles or permissions. Using the delegation module of REI we can change the policies dynamically to adapt to the changes in roles or permissions.
Authorization and Privacy for Semantic Web Services [5] discusses how to incorporate security information into the OWL-S Semantic Web service model by integrating descriptions of semantically rich policies for authorization, privacy and confidentiality. These policies can include conditions on attributes of the service requestor and provider.

It describes ontologies used to annotate OWL-S input and output parameters with respect to security, including encryption and digital signatures. It uses an OWL matchmaker that allows the requestor to invoke only those services that match the requestor’s policies and vice versa. This work is very much similar to ours.
Extensible Access Control Markup Language (XACML) [10] is a general purpose policy system designed to support the needs of most authorization systems. It defines the syntax for a policy language and semantics to process the policies. There is a request/response format to query the policy system and semantics of how the policies are applied to requests. This
language is similar to REI as it provides access control over actions and conflict resolution. However since it is based on XML it does not benefit from the interoperability and extensibility provided by semantic web languages. It also does not provide speech acts such as delegation, revocation, obligation and prohibition which are provided by REI for updating the policies dynamically in a pervasive environment.

KAoS [11] is a policy language based in OWL which can be used to develop authorization and obligation policies over actions. KAoS policies are OWL descriptions of actions that are either permitted or denied. Hence they are kind of less expressive then REI policies. However KAoS policies allow classification of policy statements enabling conflicts to be discovered from rules themselves. However REI includes run-time conflict resolution by supporting meta-policies.
Chapter 5
Motivation and Design

Task Computing [1], [2] is a user-oriented framework that lets non-expert users accomplish complex tasks in application-, device-, and semantic-rich environments. Task Computing provides several ways in which users can interact with pervasive computing environments. Unlike traditional stand-alone computers that rely on system based control to verify the identity of a person and authorize that person to use the computers services and resources, there is a need of unobtrusive and flexible access control within Task Computing.

Security and access control are one of the major issues within pervasive computing environments such as Task Computing. Users should be allowed to access resources and services anytime and anywhere and at the same time not all users should be given the right to services desired. Access to services should be restricted based on security policies imposed by the environment. A way to express policies and an engine to reason over the policies was required. The dynamicity of the environment also required a mechanism for updating policies on the fly.

REI [3], [4], [5] policy specification developed at the University of Maryland, Baltimore County is an expressive and extensible language for describing different kinds of policies including security policies. The REI policy engine can reason over REI policies and domain knowledge to provide answers about current permissions and obligations of an entity

dynamically. The REI policy language and REI engine came as a perfect match for Task Computing. The REI policy engine could combine

· Policies regarding access to services with respect to Fujitsu.

· Ontologies expressing domain knowledge about Fujitsu.

· Facts expressing credentials of the user.

and reason over them to determine the access rights for users.

[image: image7]
Also in Task Computing there was a need to dynamically update policies on the fly based on conditions imposed by Fujitsu. Using REI delegation/revocation mechanism the policies could be modified dynamically on the fly. Such considerations made REI policy specification language and REI engine a good choice for the Task Computing Environment.

Design

One of the major design concerns was whether to have a centralized REI engine or have the REI engine at each client and service. If REI engine is present at each and every client then they can determine the feasibility/ accessibility without divulging its secret attributes /policies. Each client and service can be more self-contained, packaged and stand-alone which is very important in pervasive environments where there is little or no help from other resources. There wouldn’t be any large set of policies that require complex calculations.

Having a centralized policy engine would have some disadvantages. There would be a single point of failure. If the policy engine at this central location goes down all the users would be denied access. The clients and services would have to reveal their secret attributes to each other leading to privacy issues.

In Task Computing in some cases there could be a centralized REI engine running on a server and services consult this server for making access control decisions. In other cases REI engine could run on each and every machine and decisions could be made on that machine itself. Also REI could run on any platform like Linux, Windows, etc. To accommodate these needs REI was designed as a Web Service so that it would work well either in a centralized or a distributed manner and also kind of platform independent. When a Task Computing Service comes up it would register itself with the REI engine it is
configured. During registration the private policies of the service are loaded within the REI knowledge base. Also there is a central FLA Policy Site that stores FLA shared policies.

These policies are common to all the services. The shared policies are also loaded within the REI knowledge base.

When a request comes up for this service the credentials of the user would be passed to the REI engine. These credentials will be then loaded in the REI engine as facts. The REI engine would then download the ontologies specific to this request and assert them within the REI knowledge base. It would then consult the FLA Policy Site to check if there is any update in the shared policies. If yes the shared policies are also downloaded and asserted. REI engine would then reason over the policies, facts and ontologies to determine whether the user should be granted access or not.

For authentication and integrity purpose the credentials of the user would need to be signed into a certificate by a certificate authority. The design would allow multiple certificate authorities to sign the credentials within a request. This would allow greater flexibility and maximize the chances of a service getting used.

There would also a need to make changes to the policies dynamically. There would be a need for someone to override and existing policy to let some other person use the services. The
delegation manager would have to be designed to dynamically delegate / revoke rights on the fly by making changes to the shared policies. This dynamic delegation/revocation requests would have to be checked for authenticity, authority and integrity.

With all this care would have to be taken not to make the Task Computing experience cumbersome for the user. Also the policy calculation would have to be done in a reasonable amount of time. There is always a tradeoff between security and ease of use. With appropriate technologies and smartly designing the system we would try to make the system more secure and less cumbersome for the user.

 Chapter 6

 Implementation

The REI engine is implemented as a Web Service using JWSDP. JWSDP - The Java Web Service Developer Pack is an integrated toolkit you can use to build, test and deploy XML applications, Web Services and Web Applications using the latest Web Service technologies and standard implementations. This Web Service API provided functionality to add/remove policies, ontologies and facts to/from the REI engine. It also provided functionality to query the REI engine if a user had the right to a Secure Service.

Credential Creator software was developed to create digitally signed signatures in OWL format. The Credential Creator was installed at the desktop machine that helped the Office Administrator to created signatures based on the individuals’ credentials such as Name, Affiliation, Status, etc. In addition to this the Credential Creator adds metadata such as creation date and expiry date.

[image: image8]
The FLA Policy Site Manager is implemented as a Web Server that stores and updates the FLA Shared Policies. The modifications to the shared policies can be done by the FLA Policy Site Administrator statically. Modifications can also be done dynamically using the delegation/revocation module. The delegation/revocation requests sent by the Delegation Manager are first validated for authenticity before modifying the policies.

[image: image14.png]FLA Certificate Authority [E]=]

Credential Creator

EnterIndividual Detads

rtein

Mokinder Choprd

FLA. Colege Pk

Enter Expity Date and Time

August 17,2004 - D5 00PM 7|
Sign Credential

Delegation manager software was created that allowed users to dynamically delegate and revoke rights by making changes to shared policies in FLA Policy Site Manager using HTTPS. The delegation/revocation request is signed using the users Private Key and sent to the FLA Policy Site Manager. At the FLA Policy Site Manager the signature is checked for authenticity and integrity. If valid the shared policies are modified and flag is set so as to show there is a modification of shared policies.

The access control using REI was implemented on the Print Service, which allowed users to print files remotely, to create the Secure Print Service. The system was deployed at the Fujitsu Laboratories of America, College Park. The Secure Print Service was deployed in the conference room along with other services available to the Task Computing client.

The overall picture showing interaction between the different modules is given below

[image: image9]
Usage Scenario

Step 1

Dr. Tim Finin, Professor at University of Maryland, Baltimore County, visits Fujitsu. At the front desk Valerie, Office Administrator, creates a digital certificate using the FLA Private Key for Dr. Finin that has all his credentials such as

Name: Dr. Tim Finin

Affiliation: University of Maryland

Status: Visitor

In addition to this the certificate also contains metadata such as creation date and expiry date etc. This certificate is then stored in OWL format in the certificates folder on the STEER Stick. An HTML version of the certificate is also stored along for ease of readability.

Dr. Finin then enters the FLA conference room. He runs the STEER client from the STEER stick on his laptop. The STEER client then finds Secure Print Service along with other services in the environment. The OWL-S description of the service requests an additional parameter “Credential” which says that the Print Service is secure and requires a FLA credential to be executed.

[image: image10]
Step 2

Dr. Finin then tries to execute the Secure Print Service. However according to the FLA Policies visitors do not have the right to execute Secure Services. Hence Dr. Finin is denied right to the Secure Print.

When Dr. Finin tries to execute the Secure Print Service the FLA credential is sent as one of the parameters to the Service. Secure Print first checks if the validity of the certificate. If the certificate is invalid the request is denied. If certificate is valid the credentials are passed to the REI service if the user is authorized to use the Service. Since visitors do not have the right to Print Service Dr. Finin is denied access to the Service.

Step 3

Dr. Finin then asks Dr. Ryusuke Masuoka, Research Fellow at Fujitsu, to delegate him the right to print.

Dr. Masuoka uses the delegation module to delegate Dr. Finin the right to print. The delegation module creates a delegation statement and signs it using the private key of the person who is delegating. The delegation module inserts delegation statements in the shared policies using the FLA Policy Site Manager via HTTPS. The FLA Policy Site Manager first checks the signature on the statement before making changes to the shared policies hosted by the site.

[image: image11]
Step 4

Dr. Finin now tries to execute the Secure Print Service and yes this time he is successful in doing so.

The Secure Print policies allow a Research Fellow at Fujitsu to delegate right to a visitor. Dr. Finin now tries to execute the “Secure Print Service”. The REI engine service checks for any updates to the shared policies. Since shared policies are updated the new ones are downloaded by the REI engine. The REI engine then reasons again over the shared

policies, private print policies, ontologies and facts and comes to the conclusion that Dr. Finin has the right to print.

Step 5

After printing Dr. Masuoka now revokes the right.

The delegation module removes the delegation statements from the shared policies using FLA Policy Site Manager via HTTPS. Dr. Finin has no more the right to Secure Print Service.

Example Credentials, Private Policies and Shared Policies

[image: image12.emf]<!– Fact from Task Computing client -->

<rdf:RDF …>

<rdfs:label lang=en>Mohinder Chorpa</rdfs:label>

<flaonto:Name …>Mohinder Chorpa</flaonto:Name>

<flaonto:Expiry …>2004-08-23T23:05:28Z</flaonto:Expiry>

<flaonto:Status …>&flaonto;FLACPVisitor</flaonto:Status>

<flaonto:Affiliation …>UMBC</flaonto:Affiliation>

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

<SignedInfo>

…

</SignedInfo>

<SignatureValue>ZrbEVA7JWWGNbpqc…Jo6dDw=</SignatureValue>

</Signature>

</rdf:RDF>

<!– Printer Private Policy -->

…

<deontic:Permission rdf:about="&flapolicy;right_to_be_printed_on“

policy:desc="All senior employees have the right to print">

<deontic:actor rdf:resource="&flapolicy;var1"/>

<deontic:action rdf:resource="&flapolicy;printing_in_conference"/>

<deontic:constraint rdf:resource="&flapolicy;preOrSenior"/>

</deontic:Permission>

…

<!– Delegation Inserted (and Removed) in Shared Policy-->

<action:Delegation

rdf:ID=“Delegation2004-08-23T19:32:19ZRyusukeMasuoka">

<action:sender rdf:resource="&inst;RyusukeMasuoka"/>

<action:receiver rdf:resource="&inst;MohinderChorpa"/>

<action:content>

<deontic:Permission>

<deontic:action rdf:resource="&inst;ASeniorEmployeePrintingAction"/>

</deontic:Permission>

</action:content>

</action:Delegation>

Chapter 7
XML Digital Signatures

Current security technologies in deployment are insufficient for securing business transactions on the web. For example SSL provides interchange of data securely between the client and the server but once received the data is left unprotected on the server where it is more vulnerable to attack. If the data itself is encrypted instead of the transport it would reduce the instances of unencrypted data left vulnerable on public servers.

An XML Digital Signature [12] is a standard that defines a schema for storing the results of a digital signature when applied to XML data. XML Digital Signatures add authentication, data integrity and support for non-repudiation for the data they sign. Using XML Signatures an individual can sign specific portions of the XML tree rather than the complete document. Thus using XML Signatures an XML Document could be signed by different authors at different times each signing only those components relevant to them.

Signature validation requires that the data object that was signed would be accessible. The XML Signature itself will generally indicate the location of the original signed object. The reference can

· Be referenced by a URI within the signature

· Reside within the same document as the signature

· Be embedded within the XML Signature

· Have its XML Signature embedded within itself

Components of an XML Signature are as follows

[image: image13.jpg]<signature>

slement, cenfied byt URI attute

<Signedinfo> /
(CanonicalizationMethod)

(SignatureWéthod)
(<Referende (URI=)? >

(Transforms)?s __ (e s cemert st on
(Digesthethod) ™ [orsrediet o procasang e st wirs

(DigestVa ,u,)\ ppliedto thereferenced resource's contont

oetora it was digsied

</Reference>)+
<Signedinfo> [The iestvalie sementcars vl |
(SignatureValue) o gesof h reerenced esourcs
(Keylnfo)?,
(Object)* The <SignatureValue> element carnes.

<Isignature>

thevalue of e encrypted digestof he
<Signedinio> siment

o <Keyinfo> slement indcates e keyfo boused o
Valdata he signature. Possbl forms for idetiicaion
includo certficates, key names, andkey agreement
algorthms and nfcimation

Creation of an XML Digital Signature involves the following steps
· Apply the transform to the data objects to be signed. Transforms are applied in the order they are specified.

· Calculate the message digest of the output of the transforms.

· Create a reference element that includes the URI of the data object, the transforms used, the digest algorithm, and the digest value.

· Create the SignedInfo element. Include the SignatureMethod, the CanonicalizationMethod, and the references previously generated.

· Apply the CanonicalizationMethod to SignedInfo.

· Use the algorithms specified by SignatureMethod to create the signature. This usually means applying a message digest algorithm to the canonicalized SignedInfo and then signing the resulting digest.
· Create the signature element that contains SignedInfo, SignatureValue, KeyInfo and Object.
Verifying an XML Digital Signature has the following steps

· Canonicalize the SignedInfo element according to the CanonicalizationMethod specified in SignedInfo.

· For each reference element, obtain the data object referenced.

· Process each data object according to the specified transform.

· Digest the result according to the digest algorithm specified for the referenced element. Compare the results with the value stored in the corresponding reference element. If the two are not equal verification fails.

· Obtain the necessary keying information. It may be available in KeyInfo or it may have been replaced.

· Apply the signature method using the previously obtained key to confirm the SignatureValue over the canonicalized SignedInfo element.
As XML becomes a vital part of business transactions we would need trustable and secure XML messages to form the basis of these transactions. Digital Signature would play a key part in securing XML transactions ensuring their integrity and authenticity.

Chapter 8
 Conclusions

Security and access control are some of the major issues for Pervasive Computing environments. There is a need of a robust and at the same time flexible access control. Access to resources and services should be controlled based on policies written for the environment. In addition to access control there is a need of authentication, integrity and non-repudiation.

Using Task Computing as an example of Pervasive Computing environment we have shown that REI can be used to provide unobtrusive and flexible access control. REI can be used in conjunction with XML Digital Signatures that provides support for authentication, integrity and non-repudiation. To accommodate changes in policies because of dynamic nature of pervasive environments REI speech acts can be used efficiently. Using REI speech acts such as delegation / revocation the policies can be modified dynamically and remotely.

Chapter 9
 Future Work
Currently within Task Computing services check the authenticity and authority of clients before granting them access. The services consult the REI engine to make these access control decisions. The REI engine uses the credentials of the user, private policies of the service and relevant ontologies to make these decisions. However this filtration process is just one way. The credentials of the service are not checked by the client before executing it. Hence there is an assumption that all services are safe to be executed which is not true. The services also need to be filtered out by the client based on policies provided by the client and credentials provided by the service. This would be advantageous in the sense that only those services that fit the client specifications and requirements will be shown to the client.

Also there could be a need for REI to run on each and every client machine. The client could be a PDA that has very limited computational capabilities. It would be very difficult to run the complete version of REI on such devices because of computational intensity and storage requirements. Hence a lighter version would be required that does not require much of the computational capabilities and less installation and work space.

When credentials of a client do not satisfy the criteria specified by the service policy the client is denied access to the service by the REI engine. However the REI engine does not state the exact reason as to why the client was denied access. The client in this case would never know the reason why he was denied access to the service. May be the client

does not have the certificate needed by a particular service. In this case if the client does know the reason for denial he could get the certificate from the respective certificate authority. Hence REI could be changed in the future to indicate in some way why the client was denied access to a particular service.

In the current security architecture adopted for Task Computing there is still a need for a centralized policy server that keeps track of all the dynamic delegations / revocations by updating the shared policies. If in the future there was a way to dynamically delegate / revoke rights in a distributed manner there would be no such need of a centralized policy server. In that case the entire architecture could be made highly distributed that is very essential for pervasive computing environments such as Task Computing.

Chapter 10
 References
[1] R. Masuoka, B. Parsia, and Y. Labrou, “Task Computing – The Semantic Web meets Pervasive Computing”, Proceedings of International Semantic Web Conference, LNCS 2870, 2003, pp. 866-881, October 2003.
[2] R. Masuoka, Y. Labrou, and Z. Song. "Semantic Web and Ubiquitous Computing - Task Computing as an Example", AIS SIGSEMIS Bulletin, Vol. 1 No. 3, October 2004.

[3] L. Kagal, T. Finin, and A. Joshi. “A policy language for a pervasive computing environment”, Proceedings of IEEE 4th International Workshop on Policies for Distributed Systems and Networks, June 2003.

[4] L. Kagal, T. Finin, and A. Joshi. “A policy based approach to security for the Semantic Web”, Proceedings of Second International Semantic Web Conference, September 2003.

[5] L. Kagal, M. Paoucci, N. Srinivasan, G. Denker, T. Finin and K. Sycara, “Authorization and Privacy for Semantic Web Services”, Special Issue on Semantic Web Services, IEEE Intelligent Systems, July 2004.

[6] K. Sagonas, T. Swift, D. S. Warren, “XSB: An Overview of its Use and Implementation”, Informal Proceedings of Workshop on Programming with Logic Databases, ILPS, 1993.

[7] B. Ludäscher, G. Yang, M. Kifer, “FLORA: The Secret of Object-Oriented Logic Programming”, Technical Report, SUNY at Stony Brook, 1999.

[8] D. Box, F. Curbera, M. Hondo, C. Kaler, D. Langworthy, A. Nadalin, Nataraj, “Web Services Policy Framework”, © Bea Systems Inc., IBM Corporation, Microsoft Corporation, SAP AG, 2001, 2002, 2003.
[9] R. Bhatti, E. Bertino, A. Ghafoor, J. Joshi, “XML-Based Specification for Web Services Based Document Security”, IEEE Computer Society, April 2004.

[10] OASIS Extensible Access Control Markup Language (XACML) Committee Specification 1.0 (Revision 1), http://www.oasis-open.org/committees/xacml/docs/s-xacml-speciﬁcation-1.0-1.doc, 2002.
[11] A. Uszok, J. Bradshaw, P. Hayes, R. Jeffers, M. Johnson, S. Kulkarni, M. Breedy, J.
Lott, and L. Bunch, “DAML reality check: A case study of KAoS domain and policy
services”, Proceedings of International Semantic Web Conference, Sanibel Island, Florida, 2003.
[12] M. Bartel, J. Boyer, B. Fox, B. LaMacchia, E. Simon, “XML-Signature Syntax and Processing”, The Internet Society & W3C, 2002.
[13] R. Masuoka, Y. Labrou, B. Parsia and E. Sirin, "Ontology-Enabled Pervasive Computing Applications”, IEEE Intelligent Systems, pp. 68-72, vol. 18, no. 5, Sep./Oct. 2003.
[14] Z. Song, Y. Labrou and R. Masuoka, "Dynamic Service Discovery and Management in Task Computing”, MobiQuitous, Boston, USA, pp. 310 – 318, August 22-26, 2004.
[15] Task Computing Home Page, http://taskcomputing.org.
[16] L. Kagal, T. Finin and A. Joshi, "Trust Based Security for Pervasive Computing Enviroments", IEEE Communications, December 2001.

[17] L. Kagal, "Rei: A Policy Language for the Me-Centric Project", HP Labs Technical Report, 2002.
[18] J. Undercoffer, F. Perich, A. Cedilnik, L. Kagal, A. Joshi, T. Finin, "A Secure Infrastructure for Service Discovery and Management in Pervasive Computing", The Journal of Special Issues on Mobility of Systems, Users, Data and Computing, 2003.

[19] G. Denker, L. Kagal, T. Finin, M. Paolucci and K. Sycara, "Security for DAML Web Services: Annotation and Matchmaking", Second International Semantic Web Conference, Sanibel Island Florida, October 2003.
[20] A. Patwardhan, V. Korolev, L. Kagal and A. Joshi, "Enforcing policies in Pervasive Environments", Proceedings of International Conference on Mobile and Ubiquitous Systems: Networking and Services, 2004.
Download Required Ontologies

Ontologies Sites

FLA Policy Site

Print Policies

Download FLA Policies (shared)

Download Print Policies (private)

Call Print with the Facts

Modify FLA Policies

Delegate/Revoke right

Consult REI Engine

REI Engine

Print Service

Client

Delegator

Delegation

Fact Assertions

Other certificates of User

User Attributes as Certificate

Name: Tim Finin

Title: Professor

Affiliation: UMBC

FLA Role: VIP

Rights

Prohibitions

Obligations

Dispensations

 Facts

REI

Ontologies

Policies

PAGE
48

[image: image15.jpg]Ryusuke Masuoka

Delegation/Revocation Module

Delegate Rightto Specific Indiidual

DelegateTo [Anabhay Sorthai 2
Right To Select URL =

Delegate Right

Revoke Existing Delegations

™ MohindeiChopra@prining_in_conference

Revoke Fight

[image: image16.wmf]