A Holistic Approach to Secure Sensor Networks
Thursday, July 28, 2005, 10:00am - Thursday, July 28, 2005, 12:30pm
325B ITE
We have designed a two-tier adaptability component, SWANS, using a principled, ontological approach to ensure both local and global responses to environmental variations. Local responses are generated by individual sensor nodes. At node level, SWANS monitors a set of twenty-one low-level parameters (including those associated with secure WSN establishment) and employs a local knowledge base to compute the node's logical state. It employs a set of rules determine the most appropriate response corresponding to a logical state. At network level SWANS combines sensor node state information with user-defined constraints and sensor data. It employs a network-level knowledge base to compute the network's logical state and generate a global response to the observed environmental variation. Experimental evaluations show that WSNs employing SWANS are more secure, live longer and have better connectivity than their non-adaptive counterparts.
We also designed a set of three security protocol suites, SONETS, that secures a WSN against different classes of adversaries. P-SONETS is a centralized protocol suite that secures WSNs deployed to establish a perimeter around high value assets against adversaries who seek to breach the perimeter and attack the asset. C-SONETS is a scalable centralized protocol suite containing a novel topology discovery and key setup protocol to thwart adversaries with global presence in the area of interest capable of attacking the WSN before, during and after its formation. D-SONETS is a distributed protocol suite that ensures rapid establishment of a secure WSN for non-critical applications in which adversary presence is local. Experimental evaluations of P-SONETS, C-SONETS and D-SONETS show their feasibility to the associated application class and their ability to thwart adversaries corresponding to each class.
Assertions
- (Event) A Holistic Approach to Secure Sensor Networks has the associated publication (Publication) A Holistic Approach to Secure Sensor Networks