Frontiers in Big Data

Understanding Cybersecurity Threat Trends through Dynamic Topic Modeling

, , and

Cybersecurity threats continue to increase and are impacting almost all aspects of modern life. Being aware of how vulnerabilities and their exploits are changing gives helpful insights into combating new threats. Applying dynamic topic modeling to a timestamped cybersecurity document collection shows how the significance and details of concepts found in them are evolving. We correlate two different temporal corpora, one with reports about specific exploits and another with research-oriented papers on cybersecurity vulnerabilities and threats. We represent the documents, concepts, and dynamic topic modeling data in a semantic knowledge graph to support integration, inference, and discovery. A critical insight in discovering knowledge through topic modeling is seeding the knowledge graph with domain concepts to guide the modeling process. We use Wikipedia concepts to provide a basis for performing concept phrase extraction and show how using those phrases improves the quality of the topic models. Researchers can query the resulting knowledge graph to reveal important relations and trends. This work is novel because it uses topics as a bridge to relate documents across corpora over time.

cybersecurity, dynamic topic modeling, knowledge graph, topic modeling


Frontiers Media

to appear

UMBC ebiquity