IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2019)

RelExt: Relation Extraction using Deep Learning approaches for Cybersecurity Knowledge Graph Improvement

, , , , , and

Security Analysts that work in a `Security Operations Center' (SoC) play a major role in ensuring the security of the organization. The amount of background knowledge they have about the evolving and new attacks makes a significant difference in their ability to detect attacks. Open source threat intelligence sources, like text descriptions about cyber-attacks, can be stored in a structured fashion in a cybersecurity knowledge graph. A cybersecurity knowledge graph can be paramount in aiding a security analyst to detect cyber threats because it stores a vast range of cyber threat information in the form of semantic triples which can be queried. A semantic triple contains two cybersecurity entities with a relationship between them. In this work, we propose a system to create semantic triples over cybersecurity text, using deep learning approaches to extract possible relationships. We use the set of semantic triples generated through our system to assert in a cybersecurity knowledge graph. Security Analysts can retrieve this data from the knowledge graph, and use this information to form a decision about a cyber-attack.

  • 679286 bytes


Downloads: 282 downloads

UMBC ebiquity