Proceeding of the 34th AAAI Conference on Artificial Intelligence

CASIE: Extracting Cybersecurity Event Information from Text

, , and

We present CASIE, a system that extracts information about cybersecurity events from text and populates a semantic model, with the ultimate goal of integration into a knowledge graph of cybersecurity data. It was trained on a new corpus of 1,000 English news articles from 2017–2019 labeled with rich, event-based annotations that cover both cyberattack and vulnerability-related events. Our model defines five event subtypes along with their semantic roles and 20 event-relevant argument types (e.g., file, device, software, money). CASIE uses different deep neural network approaches with attention and can incorporate rich linguistic features and word embeddings. We have conducted experiments on each component in the event detection pipeline, and the results show that each subsystem performs well.

  • 1579905 bytes

cybersecurity, events, natural language processing


AAAI Press


Downloads: 1746 downloads

UMBC ebiquity